University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 213 Winter 2023 Assignment 11 ("Why?")

Due never

1. Majorization questions.

(a) Show that if a doubly stochastic map is reversible (invertible and the inverse is also doubly stochastic) then it is a permutation.
(b) Show that the set of doubly stochastic maps is convex (that is: a convex combination $\sum_{a} p_{a} D_{a}$ of doubly stochastic maps is doubly stochastic). What are the extreme points of this set? (This is the easier direction of the Birkhoff theorem.)
(c) Show that a pure state and uniform state satisfy $(1,0,0 \cdots) \succ p \succ(1 / L, 1 / L \cdots)$ for any p on an L-item space.
(d) A useful visualization of majorization relations is called the 'Lorenz curve': this is just a plot of the cumulative probability $P_{p}(K)=\sum_{k=1}^{K} p_{k}^{\downarrow}$ as a function of K. What does $p \succ q$ mean for the Lorenz curves of p and q ? Draw the Lorenz curves for the uniform distribution and for a pure state.
(e) Show that the set of probability vectors majorized by a fixed vector x is convex. That is: if $x \succ y$ and $x \succ z$ then $x \succ t y+(1-t) z, t \in[0,1]$. Hints: (1) the analogous relation is true if we replace x, y, z with real numbers and \succ with \geq. (2) Show that $P_{p \downarrow}(K) \geq P_{\pi p \downarrow}(K)$ (where πp^{\downarrow} indicates any other ordering of the distribution).
(f) For the case of a 3-item sample space we can draw some useful pictures of the whole space of distributions. The space of probability distributions on three elements is the triangle $x_{1}+x_{2}+x_{3}=1, x_{i} \geq 0$, which can be drawn in the plane. We can simplify the picture further by ordering the elements $x_{1} \geq x_{2} \geq x_{3}$, since majorization does not care about the order. Pick some distribution x with $x_{1} \neq x_{2} \neq x_{3}$ and draw the set of distributions which x majorizes, the set of distributions majorized by x, and the set of distributions with which x does not participate in a majorization relation ('not comparable to x ').

2. Checking the operational interpretation of trace distance.

(a) Warmup. Show that for two pure states $|1\rangle,|2\rangle$, their trace distance T and their fidelity F satisfy

$$
F^{2}+T^{2}=1
$$

(b) In lecture we proved a result relating the probability of success at distinguishing two states by a single measurement to their trace distance. Might it be possible to evade this theorem by considering POVMs which are not projective measurements?
Consider two non-orthogonal pure states $|1\rangle,|2\rangle$. with overlap $\delta=|\langle 1 \mid 2\rangle|^{2}$ and consider the POVM made of :

$$
E_{1}=\chi|1\rangle\langle 1|, E_{2}=\alpha|2\rangle\langle 2|, E_{3}=1-E_{1}-E_{2}
$$

For which values of χ, α is this a POVM?
Find the probability of success of the strategy: if outcome is 1 guess 1 , if outcome is 2 guess 2 , if outcome is 3 do a little dance then guess randomly. Show that the bound we proved is not violated.
(c) Nevertheless, POVMs (which are not projective measurements) are indeed useful for state discrimination. Find a POVM with the property that distinguishes between two non-orthogonal pure states $|1,2\rangle$ in such a way that for one outcome we are certain that the state is $|1\rangle$ and for another we are certain that the state is $|2\rangle$. (There is a third outcome where we learn nothing from the measurement.)
3. Entanglement negativity for pure states. Show that when $\rho_{A B}=|\psi\rangle\langle\psi|$ is pure, the logarithmic negativity

$$
E_{N}\left(\rho_{A B}\right) \equiv \log \left\|\rho^{T_{A}}\right\|_{1}
$$

is the Renyi entropy of index $1 / 2, S_{1 / 2}\left(\rho_{A}\right)$, with $S_{\alpha}(\rho) \equiv \frac{1}{1-\alpha} \log \operatorname{tr} \rho^{\alpha}$. Use the Schmidt decomposition.
4. Additivity of squashed entanglement. [from Preskill]
(a) Use the chain rule for mutual information and the non-negativity of the conditional mutual information to show that

$$
\begin{equation*}
I\left(A A^{\prime}: B B^{\prime} \mid C\right) \geq I(A: B \mid C)+I\left(A^{\prime}: B^{\prime} \mid A C\right) \tag{1}
\end{equation*}
$$

Conclude that the squashed entanglement is superadditive, i.e.

$$
E_{s q}\left(A A^{\prime}: B B^{\prime}\right) \geq E_{s q}(A: B)+E_{s q}\left(A^{\prime}: B^{\prime}\right)
$$

(b) Show that for the special case of product states of the form $\rho_{A B A^{\prime} B^{\prime}}=$ $\rho_{A B} \otimes \rho_{A^{\prime} B^{\prime}}$, the inequality (1) is saturated:

$$
E_{s q}\left(A A^{\prime}: B B^{\prime}\right) \stackrel{\text { product states }}{=} E_{s q}(A: B)+E_{s q}\left(A^{\prime}: B^{\prime}\right)
$$

5. Literature quest. [optional] In lecture I mentioned some sufficient conditions (something like additivity, convexity) for an entanglement monotone $E_{X}(\rho)$ to satisfy

$$
E_{D}(\rho) \leq E_{X}(\rho) \leq E_{F}(\rho)
$$

where E_{D}, E_{F} are the entanglement of distillation and formation respectively. Find the right conditions and a proof that they are sufficient in the literature (or, more ambitiously, find them yourself).

