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In this paper we will discuss the error correcting properties of the toric code. We discuss the
critical probability where error correction is guaranteed and how zero temperature improves error
correction. Information given in PHYS 213 will be taken as given, but a brief refresher is provided.
This is by no means a comprehensive guide to the subject, but presents a few choice pieces of
information on the subject.

INTRODUCTION

Again, introductory knowledge of the toric code is
taken as given, but some is reiterated here for review
and convenience. The toric code was designed by A. Ki-
taev for the purpose of quantum computation [1]. For
a 2D graph with qubits located on each lattice link, we
have two check operators, the plaquette operator and site
operator, respectively[2][3][4]

ZP =
∏
l∈P

Zl, Xs =
∏
l∈s

Xl, (1)

where the plaquette measures the 4 links surrounding
a square and site the 4 links surrounding a vertex, so
each check will measure four qubits. Plaquette operators
check for bit flips while site operators check for phase
flips. These operators are local, meaning that they only
affect neighboring qubits.

It is also important for this paper to define chains.
A 1-chain is any mapping which assigns an element of
Z2={0,1} to each lattice link (where a qubit is located),
and sometimes also refers to all links which are mapped
to the value 1. 0-chains map 0, or 1 to a lattice site and
2-chains map the same to each plaquette. [2].

ERROR CORRECTION

The toric code has an impressive way of finding and
correcting errors. The syndrome is comprised of the val-
ues of all check operators on the plane. If there are no
errors, the values from the check operators will be +1,
however in the presence of errors they will be -1. If errors
occur along a series of links, they are called an error chain
and the sites on the boundaries are referred to as defects.
There are many possible error chains that can create this
boundary, such as those in figure 1, but fortunately error
chains with the same boundary generate the same syn-
drome and can be identically corrected by acting upon
them with the Z operator. This can be thought of as
laying down a ”recovery chain” between the two defects
and acting on it, which can recover the code’s quantum
state.

FIG. 1: The site errors here could have been caused by either
error chain, however error chains with the same boundary in
general have the same syndrome [2].

Note that this is only possible if the error chain does
not wrap around the torus [2].
Because the error chain that generates the syndrome

is somewhat arbitrary, we can choose error chains that
give us an optimal syndrome for error correction. Given
an error in the code, the probability for a set of errors c
with the same effect on the code is (the starred items are
from the dual lattice, not covered in this paper)

P (c̄) =
∑
b∈B1

∑
b∗∈B∗

1

pc+b,c∗+b∗ , (2)

where B1 is the set of 1-chains that are the boundaries
of 2-chains. The probability to obtain a given syndrome
is therefore

P (∂c) =
∑

z∗∈H1

∑
z̄∗∈H∗

1

P (c̄+ z̄c̄∗ + z̄∗), (3)

where H1 = Z1/B1, and Z1 is the set of all closed curves.
The optimal method for error recovery is to choose a
recovery chain with the highest conditional probability
among those where the error and recovery chains are of
the same homology class. This sets the success rate for
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error correction to be

pmax = maxz̄,z̄∗∈H1×H∗
1

P (c̄+ z̄, c̄∗ + z̄∗)

P (∂c, ∂∗c∗)
. (4)

By weighing each syndrome with its probability, we ob-
tain the probability for successful error correction

psucc =
∑

∂c,∂∗c∗

P (∂c, ∂∗c∗)pmax(∂c, ∂
∗c∗)

=
∑

∂c,∂∗c∗

maxz̄,z̄∗∈H1×H∗
1
P (c̄+ z̄c̄∗ + z̄∗).

(5)

One important property is that the success rate goes to 1
above the critical threshold, as explained in the following
section [5].

RANDOM BOND ISING MODEL

We can learn more of the derivation of the error correc-
tion model by treating the system as a series of classical
spins σi = ±1 located at each plaquette (equivalently lo-
cated at the sites of the dual lattice) with probability p
, where each site which has been mapped to a plaquette.
The family of Hamiltonians for such a system is

Hτ (s) = −
∑
⟨ij⟩

τijsisj , (6)

where τij = ±1 corrects for when the system is ferro-
magnetic or antiferromagnetic respectively and ⟨ij⟩ are
nearest neighbor sites.

The partition function used to find the equilibrium
state of the system is

Z(β, τ) =
∑
s

eβHτ (s). (7)

Note that switching the spin of each plaquette would not
change the energy. We can also preserve the energy if
the spins are flipped in a nontrivial loop such as the bold
region in figure 2 as long as we flip the signs of the inter-
action τ along the boundary. However, nothing can be
done if in the same figure we flipped the signs along the
bold line on the right which goes around the torus. This
model is known as the random bond Ising model [5],[2].

With the random Bond Ising model, we can define the
Nishimori line

e−2β =
p

1− p
(8)

in the phase diagram. The Nishimori line, when plot-
ted against the phase diagram of the random bond Ising
model in figure 3, gives the probability pcrit which is the
threshold for error correction [5]. With a perfectly mea-
sured syndrome, this probability has been numerically
determined to be approximately 10.9 percent [2].

FIG. 2: The random bond ising model, where each plaquette
has been assigned a random spin si with probability p. The
energy can be preserved if all spins flip in the darkened non-
trivial loop and their interactions with plaquettes outside of
the loop reversed, but not for the bold line on the right [5].

FIG. 3: The Nishimori line (dotted) plotted with the phase
diagram of the antiferromagnetic random bond Ising mode.
The intersection of the curves identifies the critical probability
pcrit [5].

TORIC CODE AT T=0

As one could expect, surface codes are most stable at
zero temperature. While coherence scales with system
size, it is best to look at the thermodynamic limit with
an arbitrarily large system size to generalize our results
in code stability. Perturbations in the Hamiltonian due
to thermal effects can change the dynamics of a system
in a way that affects its ability to self-correct [6].
To be more specific on the effect of temperature, logical

operators that are not part of the code’s stabilizer T̂µ

have a zero expectation value for long times in a local
system

⟨T̂µ⟩α = 0. (9)
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We can find the autocorrelation time τ , which de-
scribes how long the system can continue self-correcting.
Using the autocorrelator

GT̂µ
= ⟨T̂µ(0)T̂µ(t)⟩, (10)

which is valid at all positive temperatures, G goes to
0 as (|t|/τ) goes to infinity, showing that autocorrelation
time τ is finite. Only at zero temperature will the auto-
correlation time be infinitely large, meaning that the code
is indefinitely self-correcting. Source [7] demonstrates
how this principle explicitly applies to the toric code,
where T̂µ = Xµ or Zµ.

OTHER SURFACE CODES

Other models have been devised which present more
information about a system. A widely-used version is the
honeycomb lattice model, also by Kiatev. This model has
3 links to a site, and 3 distinct types of links, (x, y, and
z) each facing in a different direction. This lattice gives
the additional information of a spin at each site, with
one of two choices corresponding to a spin 1/2 degree of
freedom [4][7].

FIG. 4: The honeycomb planar code. Spins are found at each
site, and there are 3 distinct types of links (x, y, and z) which
are each at different angles on the diagram. [7]

Codes also exist that can describe higher-dimensional

systems. The D=3 generalization of the 2D toric code has
a site operator comprising of the 6 links that border a site,
and a plaquette operator comprising of the 6 plaquettes
that create a cube, with the same constraints as in the 2D
case. [7]. 3D gates are more effective for local operators
as each site has more neighbors [2].

CONCLUSION

The toric code is a surface code which has unique abil-
ities in error correction. The random bond Ising model
can be used to derive and analyze its error correcting
properties. At zero temperature, the toric code has the
ability to self-correct indefinitely. Many other surface
codes similar to the toric code have found success by en-
coding additional information.
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