Summary: On the RG running of the entanglement entropy of a circle

Summarized by Eugene Chen ${ }^{1}$
${ }^{1}$ Department of Physics, University of California at San Diego, La Jolla, CA 92093

Abstract

Defining the c-function to measure the degrees of freedom is a challenging problem. Casini and Huerta [1] proposed using the entanglement entropy of a circle to construct a c-function in $2+1$ dimensions, based on the strong subadditivity and Lorentz covariance. However, in higher dimensions, divergent terms make it difficult to generalize this result. The microscopic structure of the surface in dimensions $\mathrm{d}_{\mathrm{j}} 2$ contributes to different logarithmically divergent terms in the entropy, which may end up making the inequality of SSA less useful.

INTRODUCTION

C-theorem states that, in $1+1$ dimensional spacetime, the degrees of freedom of a CFT at UV limit is higher than the one of the CFT at IR fixed point in the same RG flow trajectory. The degrees of freedom is measured by the c-function, but it's non-trivial to define such a quantity in higher dimensions. In $2+1$ dim, with SSA and Lorentz covariance, Casini and Huerta proved the monotonicity of $c_{0}(r) \equiv S(r)-r S^{\prime}(r)$ which can thus be defined as the c-function. In Casini and Huerta's paper, they used 3 chapters to discuss the $1+1$ dim case, $2+1$ dim case, and the general $d+1$ case, respectively.

INTERVALS IN TWO-DIMENSIONAL SPACETIME

Consider a pair of boosted intervals A and B as shown in figure 1. By causality, all the information we have in XY should be kept in A as well, i.e. $S(X Y)=S(A)$ and $S(Y Z)=S(B)$. Now we can apply SSA

$$
\begin{equation*}
S(A)+S(B) \geq S(A \cap B)+S(A \cup B) \tag{1}
\end{equation*}
$$

If we use the radius to rewrite the entropy, and also identify $S(A \cap B)=S(Y)=S(r)$ and $S(A \cup B)=S(X Y Z)=$ $S(R)$, we will have the inequality below

$$
\begin{equation*}
S(\sqrt{r R}) \geq S(R)+S(r) \tag{2}
\end{equation*}
$$

Here with Minkowski metric, we compute the radius of A and B

$$
\begin{equation*}
4 r_{A}^{2}=4 r_{B}^{2}=(R+r)^{2}-(R-r)^{2}=4 r R \tag{3}
\end{equation*}
$$

Let $R=r+\epsilon$ and expand the two sides of the SSA inequality, then we will get $r S^{\prime \prime}(s)+S^{\prime}(r) \leq$ If we further define the c-function $C(r) \equiv r S^{\prime}(r)$, it's obvious that we have a c-function which is dimensionless and always decreasing $C^{\prime}(r) \leq 0$

Figure 1:The interval A and B have radius $\sqrt{r R}$.

Moreover, this c-function can be linked with the one in Zamolodchikov's c-theorem. At the critical point $S(r)=$ $\frac{c}{3} \log \left(\frac{r}{\epsilon}\right)+c_{0}$, where c is the Virasoro central charge, ϵ is a cutoff, and c_{0} is a constant. Plug in this entropy to our c-function, $C(r)=\frac{c}{3}$, we get result consistent with Zamolodchikov's theorem which claims the central charge can be the c-function.
On the other hand, the other constant we have c_{0} can not be defined as a c-function. That is because c_{0} and its total variation are not universal, and they depend on the cutoff ϵ. However, there is an exception which happens when boundary conditions are imposed. In a fixed bulk CFT, c_{0} is the boundary entropy. And the analogue of c -theorem is called the g -theorem.

CIRCLES IN 2+1 DIMENSIONS

The entropy of circles obtained by rotating a single circle around a point different from its center in a 2 dim plane diverges due to the corners of the intersection and the union of those rotated circles.

Figure 2:The rotated circles and the wiggly union of the corners

To remedy this divergence, we can boost the circle, and then rotate it. In such a way, all those wiggly corners approach circles on the light cone. And thus the entropy of any of them is finite.

Figure 3:The rotated circles on the light cone
The boosted circle D lies on the plane $t=x \frac{R-r}{R+r}+\frac{2 r R}{r+R}$. And the circle equation is $R r=\left(x-\frac{R-r}{2}\right)^{2}+y^{2}-(t-$ $\left.\frac{R+r}{2}\right)^{2}$. Lastly, $y=x \tan \left(\frac{\theta}{2}\right)$, where θ is the rotation angle. Using these equations, we can get the radius of the approximate circles

$$
\begin{equation*}
l=\sqrt{x^{2}+y^{2}}=\frac{2 r R}{R+r-(R-r) \cos \left(\frac{\theta}{2}\right)} \tag{4}
\end{equation*}
$$

Next, we want to plug this in the SSA inequality. For N sets $\left\{X_{i} \mid i=1,2, \ldots, N\right\}$, the SSA is
$\sum_{i} S\left(X_{i}\right) \geq S\left(\cup_{i} X_{i}\right)+S\left(\cup_{\{i j\}}\left(X_{i} \cap X_{j}\right)\right)+\ldots+S\left(\cap_{i} X_{i}\right)$
The left hand side are the circles on the boosted spacial plane, and the right hand side are the approximate circles on the light cone.

$$
\begin{equation*}
N S(\sqrt{R r}) \geq \sum_{i=1}^{N} S\left(\frac{2 r R}{R+r-(R-r) \cos \left(\frac{\theta}{2}\right)}\right) \tag{6}
\end{equation*}
$$

After taking the $N \rightarrow \infty$ limit, the inequality becomes

$$
\begin{equation*}
S(\sqrt{R r}) \geq \frac{1}{\pi} \int_{0}^{\pi} d z S\left(\frac{2 r R}{R+r-(R-r) \cos (z)}\right) \tag{7}
\end{equation*}
$$

Again, let $R=r+\epsilon$, then this inequality 7 will be turned into $S^{\prime \prime} \leq 0$. Now consider a quantity $c_{0}(r)=S(r)-r S^{\prime}(r)$, with the semi-negativity of $S^{\prime \prime}$, we also know $c_{0}^{\prime}=-r S^{\prime \prime}(r) \geq 0$. This quantity c_{0} is a good candidate of a c-function because it's dimensionless and monotonic. The tricky part here is that only the $\Delta c_{0}=c_{0}^{i r}-c_{0}^{u v} \geq 0$ is well defined. The function c_{0} itself can be sifted by arbitrary constant. This makes it hard to establish an exact correspondence between c_{0} and physical properties. It's also the main difference between this $2+1$ dim case and the original c-theorem.

SPHERES IN D+1 DIMENSIONS

In $d>2$ dimensions, the union and intersection of the circles does not approach to a perfect sphere. The microscopic structure of the surface has additional contributions that remains to be studied.

If we naively directly generalize the result in $2+1$ dimensions, we may obtain the SSA inequality (8) (neglecting the entropy of the microscopic structure)
$S(\sqrt{R r}) \geq \frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)} \int_{r}^{R} d l \frac{(R r)^{\frac{d-1}{2}}((l-r)(R-l))^{\frac{d-3}{2}}}{\sqrt{\pi}((R-r) / 2)^{d-2} l^{d-1}} S(l)$
Infinitesimal expansion $R=r+\epsilon$ will make it closer to the form we have before

$$
\begin{equation*}
r S^{\prime \prime}(r)-(d-2) S^{\prime}(r) \leq 0 \tag{9}
\end{equation*}
$$

For instance, we can substitute the conjectured form of the entanglement entropy in a 3+1-dimensional spacetime, $S(r)=c_{2} r^{2}+c_{1} r+c_{\log } \log (R)+c_{0}$, into the inequality. This will give us

$$
\begin{equation*}
c_{1}+2 \frac{c_{l o g}}{r} \geq 0 \tag{10}
\end{equation*}
$$

Here's a contradiction, $c_{l o g}$ has been proven negative in $\mathrm{d}=3$, so the inequality does not hold for small r cases. The property of the leading divergent term is also interesting.

$$
\begin{equation*}
\Delta c_{d-1} \equiv c_{d-1}^{u v}-c_{d-1}^{i r}=-\int_{0}^{\infty} d r\left(\frac{S^{\prime}(r)}{(d-1) r^{d-2}}\right)^{\prime} \geq 0 \tag{11}
\end{equation*}
$$

In the case of a massive scalar theory,

1. $\Delta c_{d-1}=\gamma_{d} \operatorname{vol}\left(s^{d-1}\right) m^{d-1} \log (m \epsilon)$ for d odd where $\gamma_{d}=(-1)^{\frac{d-1}{2}}\left[6(4 \pi)^{\frac{d-1}{2}}((d-1) / 2)!\right]^{-1}$
2. $\Delta c_{d-1}=\gamma_{d} \operatorname{vol}\left(s^{d-1}\right) m^{d-1}$ for d even and $\gamma_{d}=(-1)^{\frac{d}{2}+1}\left[12(2 \pi)^{\frac{d-2}{2}}((d-1) / 2)!!\right]^{-1}$
[1] H Casini and Marina Huerta. Renormalization group running of the entanglement entropy of a circle. Physical Review D, 85(12):125016, 2012.

The sign depends on the dimension.

