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We discuss the effect of local decoherence on topological order based on the recent papers [1, 2].
By studying 2D toric code with bit-flip errors as a concrete example, we show that two information-
theoretic quantities undergo a transition at the same error rate. An effective filed theory describing
the general decoherence-induced transitions is also presented.

INTRODUCTION

As discussed in the lecture, a system is said to exhibit
topological order if different degenerate ground states
cannot be distinguished by any local operator. This def-
inition relies on the assumption that the system is al-
ways in a pure state. However, one motivation of realiz-
ing toplological orders is that they can protect quantum
memories under decoherence, which necessarily drives
the system to the mixed states. This naturally raises
several questions: How can topological order be quan-
tified in mixed states? How stable are the topological
orders under decoherence? Is there any error-induced
singularity in the mixed state?

In this note, we address the above questions based
on the recent papers [1, 2]. We begin by studying 2D
toric code with bit-flip errors as a concrete example of
the topological order under local decoherence. We show
that the trace of the n-th moment of the corrupted
density matrix can be mapped to the statistical mod-
els, allowing the identification of the phase transition
point. Two information-theoretic diagnostics are then
introduced and related to the observables of the statisti-
cal models. After having some intuition, we propose to
use the error-field double state as the general formalism
and develop an effective field theory to characterize the
decoherence-induced transitions.

TORIC CODE UNDER BIT-FLIP AND PHASE
ERRORS

We consider 2D toric code on the square lattice with
periodic boundary condition. The ground state subspace
is stabilized by the Hamiltonian

HTC = −
∑
s

As −
∑
p

Bp, (1)

where As =
∏

l∈s Xl and Bp =
∏

l∈p Bp are opera-
tors associated with vertices and plaquettes, respectively.
Noting the four-fold degeneracy of the toric code on the
torus, the maximally mixed density matrix in the code

FIG. 1: (a) The density matrix of the toric code ground state
can be written as the equal weight superposition of the loop
operators gx and gz. (b) Regarding the loop configurations

g
(s)
z as the domain walls of Ising spins, one can map the n-
th moment of the density matrix to the partition function of
(n− 1)-flavor Ising spins.

space can then be written as

ρ0 =
1

4

∏
s

1 + As

2

∏
p

1 + Bp

2
(2)

=
1

2N

∑
gz

gz
∑
gx

gx, (3)

where gz(gx) denotes Z(X) loop on the lattice(dual lat-
tice). Eq.(3) suggests an interpretation of ρ0 as the equal
weight superposition of two kinds of loop operators gx
and gz [Fig.1(a)]. Now, consider subjecting the system
to the bit-flip channel

ρ = NX [ρ0] = (
∏
i

NX,i)[ρ0], (4)

where

NX,i[ρ] = (1 − p)ρ + pXiρXi, (5)

describes the local bit-flip error. It then follows that the
corrupted density matrix becomes

ρ =
1

2N

∑
gx

gx
∑
gz

e−µz|gz|gz, (6)

where |gz| denotes the length of the loop and µz =
− log(1 − 2p). Therefore, the effect of the decoherence
corresponds to adding length tension to the loop config-
uration.

Does the decoherence channel destroy the topological
order? If so, how do we quantify it? Using the purifi-
cation trick, one can regard the corrupted mixed states
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as a pure state related to the topologically ordered state
by a depth-1 unitary circuit: |Φ⟩ =

∏
i Ui(p)|Ψ0⟩ ⊗ |0⟩i

[Fig.2]. Therefore, any linear functions of the density
matrix, e.g., any physical observable, must be a smooth
function of the error rate. However, it doesn’t preclude
the possibility of using non-linear functions of ρ to probe
the transitions. In the following, we consider the n-th
moment of the density matrix tr(ρn) and demonstrate
that it can be mapped to the partition function of statis-
tical models of (n− 1)-flavor Ising spins.

Using the property that the trace of the Pauli matrices
vanish, one can show that

trρn =
1

2(n−1)N
Zn, (7)

where Zn =
∑

{g(s)
z } e

−Hn with

Hn = µz

( n−1∑
s=1

|g(s)z | + |
n−1∏
s=1

g(s)z |
)
. (8)

The equivalence between trρn and statistical models is

manifested by regarding the loop configurations g
(s)
a as

the domain walls of the s-th flavor Ising spins:

|gsz,l| =
1 − σ

(s)
i σ

(s)
j

2
, (9)

where l labels the link and i, j are the connected sites dual
to l [Fig.1(b)]. Hn can then be written as the effective
Hamiltonian of the (n− 1)-flavor Ising spins

Hn = −µz

2

∑
⟨i,j,⟩

( n−1∑
s=1

σ
(s)
i σ

(s)
j +

n−1∏
s=1

σ
(s)
i σ

(s)
j

)
. (10)

Here the first term is the usual ferromagnetic interac-
tion of the individual Ising spins while the second term
describes to the coupling among different flavors of the
Ising spins. This model possesses a global symmetry
G(n) = (Z⊗n

2 ⋉ Sn)/Z2, where Sn is the permutation
symmetry over n ising spins. One can show that increas-
ing µz (equivalent to increasing the error rate p) drive the
system from paramagnetic phase to ferromagnetic phase
which completely breaks the G(n) symmetry.

INFORMATION THEORETIC DIAGNOSTICS

To have more physical understanding of the transi-
tions, we consider two information theoretic diagnostics.
The first diagnostic is motivated by the fact that ap-
plying wα(P), an open string operator that creates an
anyon pair αα′ at the opposite ends of the path P, to
the system creates an orthogonal ground state in the
absence of decoherence. One can then test whether ρ0

FIG. 2: The corrupted mixed states is a pure state related to
the topologically ordered state by a depth-1 unitary circuit.
Therefore, only information quantities which are non-linear
functions of the density matrix can probe the transition.

and ρ0,α := wα(P)ρ0wα(P)† are still distinguishable af-
ter subjecting to the decoherence. This can be quantified
by the Renyi relative entropy:

D(n)(ρ||ρα) :=
1

1 − n
log

trρρn−1
α

trρn
. (11)

It is expected that D(n)(ρ||ρα) diverges below the critical
error rate while saturates to a constant above the error
rate.

The second diagnostic is the Renyi negativity of even
order:

E(2n)
A (ρ) :=

1

2 − 2n
log

trρTA

trρ2n
, (12)

where TA denotes the partial transpose of the subsystem

A. It is conjectured that E(2n)
A = c|∂A| − γN , where

γN = log 2 is the topological entanglement negativity
characterizing the mixed-state long-range entanglement.

Using the mapping discueed in previous section, one
can show that the relative Renyi entropy is related to
order parameter n-th flavor Ising spins:

Dn(ρ||ρα) =
1

1 − n
log⟨σ(1)

il
σ
(1)
ir

⟩, (13)

where σ
(1)
j is the first flavor of the Ising spin at site j.

On the other hand, the entanglement Renyi negativity
is related to the excess free energy attributed to a single
flavor of Ising spins on the boundary ∂A in the same
direction ∆FA :

E = ∆FA. (14)

In the paramagnetic phase, the spins aligned across
the boundary can fluctate together, leading to the sub-
leading term in the excess free energy log 2. On the other
hand, in the ferromagnetic phase, the aligned boundary
spins are fixed by the global magnetization, leading to
the vanishing sub-leading term.

In short, both Renyi relative entropy and Renyi entan-
glement negativity can be mapped to the physical observ-
ables of the n-th flavor Ising model, and thus detect the
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FIG. 3: (a) Treating the density matrix as a state vector in
the double Hilbert space, the error-corrupted density matrix
is equivalent to the non unitary operation on the two copies
of topologically ordered pure states. (b) The double state
|ρ0⟩⟩(⟨⟨ρ0||) can be described by the two copies of TQFT in
the Euclidean half spacetime τ < 0(τ > 0), and the effect
of decoherence corresponds to the temporal defect at τ = 0.
(c) Performing a π/2 rotation maps the temporal interface
at τ = 0 onto the spatial interface at x = 0. (d) The path
integral describes a double 2D topological order with a 1D
defect.

same transition point. Their consistency strongly sug-
gests that there is a breakdown of topological orders at
a finite error rate.

FIELD THEORY DESCRIPTION: ERROR-FIELD
DOUBLE STATE AND THE MAPPING TO (1+1)

D BOUNDARY PHASES

To understand the general effect of local decoherence
without referring to microscopic details, we now employ
the effective field theory description.

We begin by noting an alternative way to understand
the effect of decoherence: treating the density matrix
as a state vector in the double Hilbert space using the
Choi–Jamio lkowski (CJ) isomorphism:

ρ0 = |Ψ0⟩⟨Ψ0| → |ρ⟩⟩ = |Ψ0⟩ ⊗ |Ψ∗
0⟩, (15)

the error-corrupted density matrix is equivalent to the
non-unitary evolution on the two copies of topologically
ordered pure states:

|ρ⟩⟩ = N (|Ψ0⟩ ⊗ |Ψ∗
0⟩) (16)

=
∏
l

∑
k

Kk,l ⊗ K̄k,l(|Ψ0⟩ ⊗ |Ψ∗
0⟩), (17)

where Kk,l ⊗ K̄k,l denotes the CJ transfromed Kraus op-
erator [see Fig.3(a)]. The advantage of this perspective
lies in the fact that we can now treat Kk,l⊗K̄k,l as an op-
erator creating two neighboring anyon pairs (kk̄)i, (kk̄)j
from the two copies of topollogically ordered ground
states. For example, the bit-flip error discussed in pre-
vious section has two CJ-transformed Kraus operators:
K0,l ⊗ K̄0,l = (1 − p)1l ⊗ 1̄l and K1,l ⊗ K̄1,l = pXl ⊗ X̄l.
The k = 1 case corresponds to creating two neighrboring
flux anyon pairs (mm̄)i, (mm̄)j . At a sufficiently large
error rate p, it is expected that the system will be driven
from two copies of topologically ordered phase to other
phases through anyon condensation.

For simplicity, we focus on the 2nd moment of the den-
sity matrix trρ2 and consider Abelian topological orders
with incoherent errors. In the double state formalism,
trρ2 corresponds to the normalization of |ρ⟩⟩:

trρ2 = ⟨⟨ρ|ρ⟩⟩ = ⟨⟨ρ0|NN |ρ0⟩⟩. (18)

The double state |ρ0⟩⟩(⟨⟨ρ0||) can then be described as
the two copies of TQFT in the Euclidean half spacetime
τ < 0 (τ > 0), and the effect of decoherence corresponds
to the temporal defect at τ = 0 [Fig.3(b)].

Since the temporal defects of toplogical quantum field
theory (TQFT) are complicated to analyze and largely
unexplored, it is more convenient to perform a π/2 ro-
tation to map the temporal interface at τ = 0 onto the
spatial interface at x = 0. The path integral then de-
scribes a (2 + 1)D system with (1 + 1)D spatial defect
[Fig.3(c)]. The spatial defect is much easier to analyze, as
the boundary of TQFT has a simple descriptions in terms
of compact bosons. Denoting s = L(R) the EFD orig-
inated from |ρ0⟩⟩(⟨⟨ρ0|) and ϕs(ϕ̄s) the compact bosons
at the ket(bra) Hilbert space, the low-energy physics of
the four decoupled edge modes ϕ := [ϕ̄R, ϕR, ϕL, ϕ̄L] can
be described by the Lagrangian

L0 =
1

4π

∑
I,J

K(2)
IJ i∂τϕ

I∂yϕ
J − V(2)

IJ ∂yϕ
I∂yϕ

J , (19)

Here K(2) = K ⊕ (−K) ⊕K ⊕ (−K) with K an integer-
valued matrix characterizing toppological orders and
V(2) = V ⊕ V ⊕ V ⊕ V a non-universal positive definite
matrix. However, note that without the decoherence,
ϕL(ϕ̄L) and ϕR(ϕ̄R) are strongly coupled. Therefore, one
should consider another Lagrangian which is present even
in the absence of the decoherence:

L1 =
∑
Λ

BΛ

[
cos

(∑
I

(KΛ)I(ϕI
L + ϕR)I

)
+ (ϕs ↔ ϕ̄s)

]
.

(20)
Here, Λ is an M -component integer vector. When BΛ

dominates (corresponding to no decoherence), the boson-
ics fields ϕL+ϕR, ϕ̄L+ϕ̄R are pinned by the cosine terms.

On the other hand, the effect of decoherence only cou-
ples the fields from the same copy of density matrix,
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which can be described by the Lagrangian

LN =
∑
Λ

CΛ

∑
s=L,R

cos
( M∑

I=1

(KΛ)I(ϕI
s − ϕ̄I

s)). (21)

Taking all the aforementioned terms together, the total
Lagrangian is

L = L0 + L1 + LN , (22)

and our goal is to classify all the possible gapped phases.
Using the framewrok developed in Ref.[3] and the sym-
metry contraint enforced by the EFD, the possible edge
phases for toric code mdouble semion model, and the
ν = 1/3 Laughlin state are summarized in Fig.4.

DISCUSSION

We have studied the effect of local decoherence on
topological order We show that there is a error-induced

singularity in the mixed state which can be identified
by the information theoretic qantities. A universal de-
scription characterizing the impace of decoherence is also
presented. It will be interesting to generalize the discus-
sion to the quantum channels including incoherent error,
non-Abelian topological orders, and even chiral topoligi-
cal orders.
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FIG. 4: Decoherence-induced phases in the Toric code, double semion model, and ν = 1/3 Laughlin state subject to incoherent
errors.
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