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In this note, we mainly discussed Boson sampling which is a restricted model of non-universal
quantum computation introduced by Scott Aaronson and Alex Arkhipov. We introduced setup of
the model including identical photons and a linear-optical network. We indicated how permanent
is related to the output of the model. We did not show why there is no efficient classical algorithm
that samples from the same probability distribution as a linear-optical network.

BACKGROUND

One motivation to invest time and money on quan-
tum computation is that there might be proved quantum
advantage, which means quantum computer can solve
problems that classical computer cannot solve efficiently.
There is one famous quantum algorithm called Shor’s al-
gorithm. Shor proved that people can factor an integer
in polynomial time on a quantum computer. It might
be a quantum advantage if people can prove integer fac-
torization is not a P problem and people did not find
such an algorithm yet. Unfortunately, Shor’s algorithm
needs to be run on a universal quantum computer, which
is well beyond current technology. What experiment can
we do currently to show some quantum advantage? Scott
Aaronson presented a model that may work at era of
noisy intermediate-scale quantum (NISQ).

BOSON SAMPLING

The model involves a quantum system of n identical
photons and m modes, where m ≥ n. We can place
photons in any mode. Let si represent the number of
photons in the ith mode and

∑m
i si = n. During the

computation, photons are never created or annihilated,
so the system has the basis {|si, . . . , sm⟩|si ≥ 0,

∑m
i=1 =

n}. One can easily check the system has dimension M =(
m+n−1

n

)
. Then the general state of the system has the

form

|ψ⟩ =
∑

S∈Ψm,n

αS |S⟩

where Ψm,n is the set of labels on the basis states. As-
sume our computer or system starts in the standard ini-
tial state |1n⟩ := |1, . . . , 1, 0, . . . , 0⟩ where the first n
nodes contain one photon each.

This system is different from a standard quantum com-
puter, so which unitary transformations can we perform
on the states? In the linear optics model, any unitary
transformation on m modes can be decomposed into a
product of optical elements, each of which acts nontriv-
ially on at most two modes. The two best-known optical
elements are called phaseshifters and beamsplitters. It

is easy to understand their behavious on single photon:
phaseshifter multiplies a single amplitude by eiθ, and
beamsplitter modifies two amplitudes for some specified
angle. By Reck’s theorem, any unitary transformation
could be decomposed into a product of such two opti-
cal elements. Furthermore, the decomposition has size
O(m2). Note that even if we can make universal quan-
tum gates, Boson sampling is not believed to be univer-
sal. It is because that in boson sampling only a single
measurement is allowed, a measurement of all the modes
at the end of the computation. The model doesn’t allow
adaptive measurements for example projective measure-
ments, so it cannot efficiently involve ancilla resources,
implement quantum teleportations or error corrections.

How do we describe the action of the optical element
on multiple photons? Phaseshifting is easily generalized
to be like:

|s1, . . . , sm⟩ → eiθsi |s1, . . . , sm⟩

For beamsplitter, it is not very obvious. There is a nat-
ural homomorphism φ, which maps an m × m unitary
transformation U to the corresponding M ×M unitary
matrix, where φ(U) acts on n photons. Then we can
write

φ(U) = φ(UT . . . U1) = φ(UT ) . . . φ(U1)

where Ut is an optical element. Physically, the linear in-
terferometer described by U performs a linear transfor-
mation of the creation operators a†i of the circuit’s input
modes:

b†j =

N∑
i=1

Ujia
†
i

When U is a 2× 2 matrix with matrix elements a, b, c, d,
by definition and a lot of calculation

⟨s, t|φ(U)|u, v⟩ =

{
0 s+ t ̸= u+ v√

u!v!
s!t!

∑(
s
k

)(
t
l

)
akbs−kcldt−l else

where u, v and s, t represent the number of photons at
two modes. Even if we can write down φ(U) explicitly, it
is not obvious that φ(U) is unitary. There is a beautiful
alternative interpretation by multivariant polynomials.
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Substitute creation operators by formal variables (b†j =

x′j , a
†
i = xi):x

′
1
...
x′m

 =

u11 . . . u1m
...

...
um1 . . . umm


x1...
xm


For any initial state with n photons, we represent it by
the sum of n-monomials. For example, the standard
initial state |1n⟩ corresponds to the degree n-monomial
Jm,n(x1, . . . , xm) = x1 . . . xn. To transform the standard
initial state, we apply the unitary matrix U to the vector
xi’s. The new state represented by a polynomial (actu-
ally is also monomial) looks like

p(x1, . . . , xm) = Jm,n(x
′
1, . . . , x

′
m) =

n∏
i=1

(ui1x1+· · ·+uimxm)

Rewrite p(x1, . . . , xm) as a linear combination of mono-
mials with degree n

p(x1, . . . , xm) =
∑

aSx
s1
1 . . . xsmm

where
∑
si = n. Define Fock-space inner product

⟨p, q⟩ =
∑
S

āSbSs1! . . . sm!

This inner product can be also interpretated as the ex-
pectation of a Gaussian distribution. By the rotation in-
variance of the Gaussian distribution, the transformation
U is unitary under such inner product. Next, we define
an isomorhpism from any general state |ψ⟩ =

∑
αS |S⟩ to

a polynomial P|ψ⟩ =
∑ αSx

S
√
s1!...sm!

. The isomorphism pre-

serves the inner product and commutes with any unitary
transformation:

|ψ⟩ φ(U)|ψ⟩

P|ψ⟩ UP|ψ⟩

φ(U)

U

What we can conclude from this commutative diagram
is

• φ(U) is unitary

• aS
√
s1! . . . sm! = αS where aS is the coefficient in

the polynomial and αS is the amplitude of a quan-
tum state.

It seems that we have linked the coefficients of some poly-
nomials with probability of some output states under the
model.

HARDNESS OF COMPUTING PERMANENT

Given an m×m matrix V , the permanent is

Per(V ) =
∑
σ∈Sm

m∏
i=1

vi,σ(i)

let Vn,n be the top-left n× n submatrix of V . By defini-
tion,

V [Jm,n] =

n∏
i=1

(vi1x1 + · · ·+ vimxm)

Then ⟨Jm,n, V [Jm,n]⟩ is just the coefficient of Jm,n =
x1 . . . xn in the above polynomial. This coefficient can
be calculated as

∑
σ∈Sn

n∏
i=1

vi,σ(i) = Per(Vn,n)

Hence for any V ,

Per(Vn,n) = ⟨Jm,n, V [Jm,n]⟩ = ⟨1n|φ(V )|1n⟩

More generally, for any basis states S, T ∈ Ψm,n,

Per(US,T ) = ⟨S|φ(U)|T ⟩
√
s1! . . . sm!t1! . . . tm!

Note if si and tj are all zeros or ones, US,T is just a
n×n submatrix of U ; otherwise, US,T is like a submatrix
of U but with repeated rows or columns. Therefore,
to find the permanent of a n × n submatrix of V , we
could repeat running the model and the model has
depth O(m2) by previous argument. If we fix the error
bound to be ϵ, Gurvits showed that the probability of
measuring a particular basis state can be estimated to
within ϵ error in poly(n, 1/ϵ) time.

In contrast with computing determinant which is
tractable because of Gauss elimination, exactly comput-
ing permanent or just approximating permanent of a
n× n matrix is #P-hard. The main result of this paper
[1] is that

• The exact BosonSampling problem is not efficiently
solvable by a classical computer, otherwise it will
cause some problems in complexity theory.

• Approximating BosonSampling is not efficiently
solvable by a classical computer, otherwise it will
cause some problems in complexity theory.

Therefore, Boson sampling might be a quantum advan-
tage theoretically.
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EXPERIMENTS

People never gave up showing quantum advantage
by noisy intermediate-scale quantum machine. At
2019, Google claimed quantum supremacy using a pro-
grammable superconducting processor [2]. At 2020,
USTC claimed quantum computational advantage us-
ing photons [3] (Gaussian boson sampling). Both are
time dependent, because the competition between classi-
cal computers and quantum computers is not over yet.
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