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Fano’s inequality, being used in the classic information theory, could be transplanted to quantum
field to study the noise caused by quantum operations. All proof is based on [1] and [2]

INTRODUCTION

Fano’s inequality is a very important theorem that
is used in the classic information theory to explore the
bound of conditional entropy when making estimations
for a certain random variable. Similarly, in the quantum
computing, a new concept Entropy exchange, a measure-
ment of how much noise caused when applying a quantum
operation to a quantum state, could be an analogy to the
conditional entropy in the classic information theory and
could be used to derive the quantum Fano’s inequality.

CLASSIC FANO’S INEQUALITY

Let’s start with the Fano’s inequality in the classic in-
formation theory. A markov chain X → Y → X̂ with
a random variable X and the estimation X̂ we get out
of observation Y. The easiest way to think this markov
chain is the communication channel such that Y equal
to the noise plus the X and X̂ is the estimation made
based on Y. Thus, the best case is that H(X|X̂) = 0
which means that our estimation completely recover the
original X with no errors, but this is basically impossible
in most other cases, and consequently we are interested
in how much information is lost through the channel, in
other words H(X|X̂), how much uncertainty X still has
given the estimation X̂.

Because it’s not ideal, making errors is inevitable and
we define Pe = P (X̂ ̸= X) and a new random variable Z
[2].

Z =

{
1, if X̂ ̸= X w.p Pe

0, if X̂ = X w.p 1− Pe

Then we could start deriving the conditional entropy
H(X|X̂) [2]

H(X|X̂) = H(X|X̂) +H(Z|X, X̂)

= H(X,Z|X̂)

= H(Z|X) +H(X|Z, X̂)

≤ H(Z) + PeH(X|X̂, Z = 1)

+ (1− Pe)H(X|X̂, Z = 0)

≤ H(Pe) + Pelog(|X| − 1)

To understand this inequality more easily, we can ex-
tend it a little bit:

H(X|X̂) ≤ H(Pe) + Pelog(|X| − 1) + (1− Pe)log(1)

Then the information lost in the channel is, intuitively,
the amount of information that Perror itself has, plus the
amount of information of the correct symbol(outcomes of
random variable), then plus the amount of information
of all other symbols except the correct one. Because we
are trying find the maximum, the information could be
maximized when every symbol is equal probable and this
is how cardinality |X| comes from.

SOME TRANSFORMATIONS

The equation given in the previous part is in term of
H(X|X̂), however, people are more interested inH(X|Y )
because Y is what we actually observed. According to the
data processing Inequality [2]:

I(X; X̂) ≤ I(X;Y )

Then we can expand the inequality:

H(X)−H(X|X̂) ≤ H(X)−H(X|Y )

H(X|Y ) ≥ H(X|X̂)

Thus the fano’s inequality becomes:

H(X|Y ) ≤ H(Pe) + Pelog(|X| − 1)

Because Pe is as Bernoulli random variable and due to
its concavity, the maximum entropy is equal to 1 when
Pe =

1
2 [2]:

H(X|Y ) ≤ 1 + Pelog(|X| − 1)

Pe ≥
H(X|Y )− 1

log(|X| − 1)

Now this form is very useful and it gives us an lower
bound on the error probability in term of conditional
entropy.
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ENTROPY EXCHANGE

The same idea from the classic conditional entropy
H(X|X̂) could be used to explain the quantum entropy
exchange: S(ρ, ε) is a measurement the information lost
when the operation ε applied to the state ρ. The oper-
ation ε with operation elements Ei could be represented
by defining an unitary operator [1]:

U |ψ⟩|0⟩ =
∑
i

Ei|ψ⟩|1⟩

Then

ρE
′
=

∑
i,j

tr(EiρE
†
j )|i⟩|j⟩

From this, we successfully convert an operation with
element Ei applying on state ρ into a new-defined ma-
trix W with elements tr(EiρE

†
j ) and therefore when

calculate the entropy exchange, we simply evaluate the
−tr(WlogW ) [1].

S(ρ, ε) = S(R′, Q′) = S(W ) = −tr(WlogW )

This form with W is termed canonical form and when
dealing with this form, some properties could be directly
borrowed from classic information theory: when applying
the operation ε on d-dimensional, the best case we can get
is S( Id , ε) = 0 which is similar to H(X|X̂) = 0, conveying
that no information is lost during this operation [1].

QUANTUM FANO’S INEQUALITY

The same intuition from classic Fano’s inequality could
be used here to understand quantum errors: the noise
generated in the operation to make entangled RQ to be
mixed, which is analogy to the noise destroying the signal
in the channel, then, the fidelity, which is similar to Pe

that will get worse when noise is greateer, would be a
problem at the final state R’Q’.

So, Quantum Fano’s inequality is very similar idea and
we just substitute Pe with fidelity and conditional en-
tropy with entropy exchange [1]:

S(ρ, ε) ≤ H(F (ρ, ε)) + (1− F (ρ, ε))log(d2 − 1)

I will go throug the proof very briefly and it starts from
the result from entropy measurement [1]:

S(ρ, ε) ≤ H(p1, p2.....pd2)

Then we need to use grouping property from classic
information theory to expand RHS:

H(p1, p2.....pd2) = H(p1)−
d2∑
i=2

pilogpi

= H(p1)− (1− p1)

d2∑
i=2

pi
1− p1

log
pi

1− p1

= H(p1) + (1− p1)H(
p2

1− p1
, ....

p2d
1− p1

)

Using this sauce we get the inequality:

S(ρ, ε) ≤ H(p1) + (1− p1)H(
p2

1− p1
, ....

p2d
1− p1

)

≤ H(p1) + (1− p1)log(d
2)

Then we substitute p1 with my fidelity F (ρ, ε) [1]:

S(ρ, ε) ≤ H(F (ρ, ε)) + (1− F (ρ, ε))log(d2 − 1)

It is worth noting that the cardinality becomes d2 be-
cause we are dealing with two dimensional. This gives an
upper bound of the information lost in the quantum chan-
nel and the probability that the one state would be iden-
tified as the other. Consequently, this ineuqlity could be
used as a good reference when studying how to transmit
the entangled states through the noisy quantum channel.

SOME QUESTIONS

People proved that entropy exchange is also a concave
function respect to ε and it should have a maximum nu-
meric value. We then could weaken the inequality by
writing the H(F (ρ, ε)) as its maximum. As we can see,
we could transform the equations in the classic fano’s
inequality to form a lower bound on the probability of
error. This makes me wondering that if we could do the
same thing for the quantum fano’s inequality to form a
lower bound for fidelity F (ρ, ε), in other words, a lower
bound of how close these quantum states are between the
source Q and final Q’.
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