
A short introduction to quantum cellular automata and their classification in one and
two dimensions

Xiang Li1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093

In this short paper, we will briefly introduce the concepts of quantum cellular automata and how
they are classified in one and two dimensions.

INTRODUCTION TO QCA

Recently, people have been discovering that quantum
cellular automata (QCA) play an important role in many
fields of physics, such as floquet systems [1], topological
phases of matter [2], etc.

In this section, we will introduce the setups and define
QCA [3, 4] .

Roughly speaking, a QCA is a ”unitary evolution” that
takes a local operator and its output operator is also local
and not far away from the support of the input operator.

Mathematically, we can give the following definition of
QCA:

Consider a graph G, with a finite set of vertices (called
sites) V . The Hilbert space of the system is a tensor
product of finite-dimensional local Hilbert space:

H = ⊗i∈V Hi, dimHi < ∞.

Furthermore, we assume the graph G has a graph met-
ric, i.e. one can compute distance between any two sites,
and talk about locality.

Definition 1 A QCA is an automorphism α of the alge-
bra A of operators on H:

α(O) = UOU†, O ∈ A, U is unitary,

subject to the locality-preserving condition: ∀Ox (with
supp(Ox) = x ∈ V ), α(Ox) is supported on the sites
within distance R from site x. R is called the range of
the QCA.

It’s possible to generalize the definition in the following
ways:

• There might be infinite number of sites. In
this case, the automorphism might not be imple-
mented by a mathematically well-defined unitary
operator[10].

• The locality-preserving might not be strict, i.e. the
support of α(Ox) might be within the distance R
up to some quickly-decaying (say exponentially-
decaying) error. Hastings called such a case ”lo-
cally preserving unitary” [5].

• It’s possible to generalize it to fermionic system.

Example 1 (Local finite depth quantum circuit)
One can easily think of a class of examples of QCA via
finite depth quantum circuit. Since at each layer (step)
in the circuit, the unitary operators of the quantum gates
have bounded supports, then for a local operator evolved
with finite number of such kinds of layers, the support of
the resulting operator must still be bounded.

CLASSIFICATION OF QCA IN ONE AND TWO
DIMENSIONS

In this section, we will introduce the classification of
QCAs in one and two dimensions [3, 6].
To talk about classification, we first need to define the

meaning of equivalence of QCAs:

Definition 2 For two QCA α, β, they are said to be R-
path equivalent if there exists a continuous ”path” (i.e.
one parameter family) of QCA {αt}|t∈[0,1] of range R,
with α0 = α, α1 = β.

Moreover, such an equivalence relation is said to be
”stable” if one tensors identity map to the two ends
α → α ⊗ id, β → β ⊗ id, and it’s still R-path equiva-
lent between α ⊗ id and β ⊗ id. Sometimes, people will
drop the word ”path”.

QCA in one dimension

In one dimension, QCA can be classified by an index
theory. The construction of the index is as follows:

1. Regroup the sites to obtain a nearest neighbour
QCA. This is always achievable. Let Ai be the
algebra of operators on local Hilbert space Hi as-
sociated with the super-site i.

2. Before explicitly define the index, we need to first
define a concept called ”support algebra”:

Definition 3 Let A,B1,B2 be algebras with A ⊂ B1⊗B2.
Choose a basis of B2, say {eµ} then ∀a ∈ A, expand it as
a =

∑
µ aµ⊗eµ. The support algebra S(A,B1) is spanned

by all aµ’s:

S(A,B1) := Span{aµ|a =
∑
µ

aµ ⊗ eµ,∀a ∈ A}. (1)
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One can see it’s actually independent of the choice
of the basis {eµ} of B2.

3. Let α be the QCA to which we want to put an in-
dex. We want to study how algebras A2n ⊗A2n+1

of H2n ⊗ H2n+1 get evolved by α, where the sub-
scripts are the labels of the super-sites. Therefore,
define the following two algebras

R2n = S(α(A2n ⊗A2n+1),A2n−1 ⊗A2n) (2)

R2n+1 = S(α(A2n ⊗A2n+1),A2n+1 ⊗A2n+2) (3)

to describe the evolution of A2n⊗A2n+1 to the left
and to the right respectively. Most importantly,
there is a lemma [6] indicates

R2n ⊗R2n+1 = α(A2n ⊗A2n+1), (4)

which results in

dim(R2n) · dim(R2n+1) = dim(A2n) · dim(A2n+1), (5)

and similarly

dim(R2n+1) · dim(R2n+2) = dim(A2n+1) · dim(A2n+2).
(6)

4. Finally, we can define the index (called GNVW in-
dex [11]) of α as

ind(α) = log

(√
dim(R2n+1)

dim(A2n+1)

)
(7)

A diagrammatic illustration is

The index has the following properties:

• eind(α) are positive rational numbers. This is be-
cause both Rn and Am are isomorphic to ma-
trix algebra, whose dimensions are square of inte-
gers, say r2n, d

2
m respectively. Therefore, eind(α) =

r2n+1/d2n+1, with r2n+1, d2n+1 ∈ Z+.

• The index is additive under automorphism compo-
sition and tensor products: ind(α · β) = ind(α) +
ind(β), ind(α⊗ β) = ind(α) + ind(β).

• ind(α) = 1 if and only if α is a finite depth quantum
circuit.

• Most importantly, ind(α) = ind(β) if and only if
they are stably equivalent.

Let’s compute the index in the examples of finite depth
quantum circuit and shift QCA:

Example 2 (Finite depth quantum circuit) The
following diagram is a depth-2 quantum circuit, where
each square is a unitary acting on nearest two sites.

Consider the resulting support algebras from A2n ⊗
A2n+1, we can see that dim(R2n+1) = dim(A2n+1),
therefore ind(α) = 0.

Example 3 (Shift QCA) Suppose at each site sits a
qudit of dimension d, and consider the QCA that shift
the support of algebra at m to m+ 1:

We can see that dim(R2n+1) = d4,dim(A2n+1) = d2,
therefore ind(α) = log d.

QCA in two dimensions

The key strategy of classifying QCA in two dimension
is by dimensional reduction: Any QCA in two dimen-
sion is stably equivalent to some QCA, which agrees with
identity everywhere except on some lower dimensional re-
gions [3].
The precise statement is the following:

Theorem 4 For any QCAs on two dimensional mani-
fold with range R = O(1), each QCA is stably O(R)-
equivalent to a shift QCA acting on a set of cycles which
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form a basis of the first homology group of the manifold,
up to the torsion of the manifold.

Remarks:

• O(a) means of the same order as a.

• The first homology characterize the non-trivial 1-
cycles. If a 1-cycle can be contracted to a point,
then it’s regarded as trivial.

• Moreover, if the manifold has torsion, one can flip
the direction of a 1-cycle. Therefore one might be
able to trivialize a pairs of non-trivial 1-cycles.

Therefore, one can reduce the two dimensional QCA to
1-cycles (classified by first homology up to torsion), then
use the GNVW index to classify those QCA on 1-cycles.

A detailed proof is beyond the scope of this short pa-
per. We will only demonstrate the idea in the following
example of QCA on torus.

Suppose we have two shift QCA in x direction,
sx,j , s

−1
x,j−1. One at y = j to the right direction, the

other at y = j − 1 to the left direction. We can see that
sx,j · s−1

x,j−1 is the same as two swappings swap2 · swap1:

As the composition of two swappings is a finite depth
circuit, we can conclude sx,j ≃ sx,j+1 up to a finite depth
circuit.

By such kind of technique, one can deform a 1-cycle,
or move it around, as long as there is no topological ob-
struction forbidding it. For example, if a 1-cycle encloses
a hole, then it cannot be moved to somewhere, or de-
formed, such that there is no hole enclosed by it. Math-
ematically, such a property is described by the first ho-
mology group of the manifold.

Therefore, we can intuitively see that how to classify
1-cycle (i.e. homology group and torsion of the manifold)
should play an important role in classifying QCA.

SUMMARY

In this paper, we briefly introduced the classification
of QCA in one and two dimensions. In one dimension,
it’s classified by GNVW index; and in two dimension,
it’s classified by the first homology of the manifold up to
torsion, together with the GNVW index.
We can see that finite depth quantum circuit and shift

QCA play an important role in classifying QCAs in one
and two dimensions. However, it’s worth pointing out
that, there are examples in three dimension [2, 7], which
is beyond such a ”finite depth circuit plus shift QCA”
class. It reminds an interesting question that how the
three dimensional QCAs are classified.
What’s more, classifying quasi-locality-preserving

QCAs is also an intriguing question [8].
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