
An Introduction to Shor’s Algorithm

Qiyu Liu1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093

March 24, 2023

1 Abstract

In this paper, we first analyze the reduction from
factorization to period-finding. Then, we look at
the quantum circuit that finds the period. Lastly,
we explain why this circuit works by analyzing the
eigenstates of the unitary operator and see how
QPE give us the period back.

2 Introduction

Many modern encryption algorithms rely on the
concept that the factorization of large integer N
takes exponential time on classical machines. How-
ever, the advent of quantum technologies and al-
gorithms revolutionize the field of encryption that
there exist quantum algorithms that can solve the
factorization problem in polynomial time. This pa-
per aims to explain one of the most famous such al-
gorithms, the Shor’s algorithm, and how it achieves
the exponential speed-up of the factorization prob-
lem.

3 Factorization to Period-
Finding

To utilize the power of quantum machines, we want
to reduce the problem of finding prime factors p, q
such that N = p ∗ q to the finding the period
of modular exponential function. Let’s define the

function as follow:

f(x) = ax mod N

Note that if we find the smallest positive integer
value r that satisfy f(r) = ar mod N = 1, we are
very close to find the prime factorization p, q as I
have shown below.

ar − 1 = (ar/2 − 1)(ar/2 + 1)

= kN where k is a postive integer

It is promising to see that if we find the solution
for f(r) = 1, we can find the prime factorization of
N . However, we don’t actually know what is the
constraints on a and if this function has a solution
for r > 0. To actually prove that there’s solutions
to f(r) = 1 for some value a, we want to invoke
the Euler’s theorem.

aϕ(N) = 1 mod N

ϕ(N) is the Euler’s totient function, and this the-
orem holds when a,N are co-prime of each other.
Using this theorem, we can show that f(x) is, in
fact, a periodic function.

f(x+ ϕ(N)) = (ax mod N) ∗ (aϕ(N) mod N)

= ax mod N

= f(x)

Since f(x) is periodic and f(0) = 1, there must
exist a periodic value r > 0 at a later period where
f(0 + r) = 1, proving that a non-trivial solution
exist for f(r) = 1. One caveat to note is that the
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Figure 1: Shor’s Circuit

period r is not necessarily a even number for the
factorization to work. In that case, we just have to
select another co-prime value a.

4 Quantum Circuit

The circuit in Figure 1 is the quantum circuit that
finds the period r. Let’s walk through the circuit
and analyze what it is doing. Let’s call the upper
register x and the lower register w.

|ψ⟩ = |x⟩n |w⟩n = |0⟩⊗n
n |0⟩⊗n

n

Applying Hadamard gate to the x registers

|0⟩⊗n
n |0⟩⊗n

n → 1√
2n

2n−1∑
k=0

|k⟩n |0⟩
⊗n
n

Next, controlled unitary gates that compute the
modular exponential is applied to w registers with
x registers as the control, and we can obtain

1√
2n

2n−1∑
i

|k⟩n
∣∣ak(modN)

〉
n

Recall from section 1 that f(x) = ax mod N is pe-
riodic. Then the terms in the w registers follow a
periodic pattern and will form a set. Let’s define
the element of set as mk, where k denotes the in-
put argument. Due to the periodic nature of this
function,mk = m0 for some k where k = integer∗r.
Next, we will take measurement on the w reg-

isters. Note that if we measure some value m, all
the other terms wheremk ̸= m will collapse. So we

Table 1:
x registers w registers
|0⟩ |m0⟩
|1⟩ |m1⟩
. . . . . .
|0 + r⟩ |m0⟩
|1 + r⟩ |m1⟩
. . . . . .

are left with the following, we define the number
of terms remaining as A for normalization.

1√
A
(|k0⟩n + |k0 + r⟩n + |k0 + 2r⟩n + . . . )

This looks very promising, as we are seeing that
each term are separated by the period r. Now, ap-
plying the inverse quantum Fourier transform will
give us the period back1.

5 Analysis

We now know the circuit in figure 1 helps us find
the period r. But why does it? What’s the physical
meaning behind this circuit. To fully understand
it, we have to understand quantum phase estima-
tion2, since this circuit is almost identical to the
QPE circuit. Let’s first look at the eigenstates of
the U |w⟩ = |xw mod N⟩.

|ui⟩ =
1√
2

r−1∑
k=0

e−2πik/r
∣∣ak mod N

〉
If we ought to sum up these states, all the phases
cancel and we will be left with |1⟩ in the computa-
tional basis.

1√
r

r−1∑
k=0

|us⟩ = |1⟩

1See Appendix A for explanation of quantum fourier
transformation

2See Appendix B for explanation of quantum phase es-
timation
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If we do quantum phase estimation on U, we will
measure a phase, since |1⟩ is the superposition of
all the eigenstates.

θ =
k

r

Knowing that k and r are finite and integers, we
can use the continued fraction algorithm to find
the period r. The continued fraction algorithm is
very mature in classical machine, and can be easily
computed on modern computers. Thus, we can
find the period r from θ.
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A Quantum Fourier Transfor-
mation

Quantum Fourier Transform take computational
basis to Fourier basis, acting it on n states is as
follow:

|x⟩ → 1√
2n

(|0⟩+e2πix/2
0

|1⟩)⊗· · ·⊗(|0⟩+e2πix/2
n

|1⟩)

B Quantum Phase Estima-
tion

Quantum Phase Estimation allows for estimation
of θ in U |ψ⟩ = e2πiθ |ψ⟩ for unitary gates. A gen-
eral QPE circuit is consisted of |0⟩n ⊗ |ψ⟩. The
QPE circuit first applies the Hadamard gate to the
first n qubits.

1√
2n

(|0⟩+ |1⟩)⊗n ⊗ |ψ⟩

Then, we controlled unitary is applied on the tar-
get register, the |ψ⟩, only if the control register,
the upper n bits, is 1. Applying the n controlled
operations CU2j to the circuit, we get

1√
2

2n−1∑
k

e2πiθk |k⟩ ⊗ |ψ⟩

This result looks exactly like if we apply QFT to
n states with x = θ2n. Therefore, we apply the
inverse QFT:

1

2n

2n−1∑
x=0

2n−1∑
k=0

e−2πik(x−θ2n)/2n |x⟩ ⊗ |psi⟩

Now, measurement on the upper qubits will yield
high probability for θ2n. Since n is known, we can
thus find the phase θ.
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