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This paper introduces the quantum local Hamiltonian ground state problem and its relationship
with the problem class Quantum Merlin Arthur (QMA). Derivation regarding the QMA-hardness
for 5-local Hamiltonian problem is shown to some extent.

INTRODUCTION

The computation of ground state energy of a Hamilto-
nian has always been a hot topic due to its applications
in areas such as solid state physics. And we expect to
apply quantum computing to this type of problem, mak-
ing use of its great potential in calculations. This paper
introduces the classical complexity theory first. Then,
the quantum Hamiltonian problem and its problem class
QMA are introduced. Then, we show that QMA prob-
lems can reduce to 5-local Hamiltonian problem, which
means that 5-local Hamiltonian problem is QMA-hard.
At the end, we briefly mentioned some results from other
paper regarding QMA-completeness and 2-local Hamil-
tonian problem.

CLASSICAL COMPLEXITY

Computation complexity measures how hard a certain
computational task is. And two complexity classes, P
and NP, are of interest here (since the QMA problems
depend on the quantum analog of NP classes.) Decision
problems such that some algorithm can provide answer in
polynomial time belongs to class P. And if the problem’s
answer cannot be found quickly, but it is possible to verify
an answer within polynomial time, then that problem is
in class NP [4]. A problem L is NP-complete if it is in
class NP and every other NP-problem can be reduced to
L. This means that by solving only one L efficiently, all
NP-problems are solved efficiently as well [3]. This shows
why we are interested in such problems, and also their
quantum analogs.

Classical local Hamiltonian ground state

A type of problem, k-SAT is related to our discussion
of local Hamiltonian. Here, the k indicates the number of
literals in each clause, where a literal means a variable or
its negation and a clause is a disjunction of literals. For
a k-SAT problem, we have a CNF formula f (consists of
AND’s of several clause) in which each clause has exactly
k literals, and we need to decide whether or not f is sat-
isfiable [3]. k-SAT with k ≥ 3 problems are shown to be
NP-complete by Cook-Levin Theorem. And if we replace
each clause with a classical 3-local Hamiltonian, 3-SAT

problem reduces to a classical 3-local Hamiltonian ground
state problem. The task of finding a 3-local Hamiltonian
is at least as hard as 3-SAT and any problems in class
NP, which makes it NP-hard.

QUANTUM HAMILTONIAN PROBLEM AND
QMA

The difficulty even for classical case is apparent – there
are many local energy minima for each local Hamiltonian
that do not minimize energy globally. And as we can
predict, the quantum version only gets worse since local
Hamiltonians might not commute with each other. We
begin defining the quantum analog of NP class, followed
by the quantum Hamiltonian problem.

QMA class

The quantum analog of NP class is called QMA. And
the following definition of QMA is adapted and combined
from [3] and [2]:

A language L is in QMA if there exists a uniform
quantum circuit family V and a single qubit mea-
surement {E0,E1} such that

1. V has polynomial size.

2. If x ∈ L, then there exists a quantum wit-
ness |ψ⟩x such that |ψ⟩ = V (|ψ⟩x⊗|x⟩⊗|0⟩∗)
such that probability of V accepts the input
is Pr[accept]= ⟨ψ|E1|ψ⟩ ≥ 1− ϵ (Complete-
ness).

3. If x /∈ L, then Pr[accept]= ⟨ψ|E1|ψ⟩ ≤ ϵ for
all potential witnesses |ψ⟩x (Soundness).

Here, V = UTUT−1...U1 where Ut are local el-
ementary gates, |x⟩ is the input, and |0⟩∗ is a
collection of scrap qubits initialized in zero-state,
and we take |ψ0⟩ = |ψ⟩x ⊗ |x⟩ ⊗ |0⟩∗
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Quantum k-local Hamiltonian problem

The definition of k-local Hamiltonian problem is (from
[3] and [2]):

Assume we have a n-qubit Hamiltonian, H =
ΣaHa, where Ha acts on at most k qubits. Given
two numbers Elow, and Ehigh where Ehigh−Elow >

1
poly(n) . The local Hamiltonian problem decides if

there exists ground state energy E0 ≤ Elow or
E0 > Ehigh. So we can determine E0 up to the
accuracy of 1

poly(n) .

k-local Hamiltonian problem is QMA-hard

In this section, we want to show that k-local Hamil-
tonian problem is QMA-hard based on their definition
in the previous section, i.e. any QMA problems can be
reduced into a local Hamiltonian problem.

Based on the definition of QMA, we construct [3]

|η⟩ = 1√
T + 1

ΣT
t=0 |ψ(t)⟩⊗|t⟩ , |ψ(t)⟩ = (UtUt−1...U0) |ψ0⟩ ,

as a quantum witness for the entire procedure. |ψ(t)⟩
is the state after t steps of the quantum circuit, and
|t⟩ (clock register) records the time flow where t ∈
{0, 1, ..., T}.

Next, we define a Hamiltonian H = Hin + Hout +
Hprop + Hclock which checks the history. And |η⟩ is in
a low energy state of H if and only if the history is valid
and accepts the witness. The purpose of Hin is to check
whether the input qubits are properly initialized. For
each qubit that is not properly initialized, the Hamilto-
nian adds an ”energy penalty” of 1. Similarly, Hout adds
energy penalty of 1 if the output qubit at time T is |0⟩
instead of |1⟩. Hprop checks if every step of V is executed
correctly. And Hclock enforces encoding of clock (the def-
inition in [3] and [2] differs, [2] does not include the term
Hclock).

Completeness gives Elow

If we were to live in a perfect world that V accepts the
input with probability of 1 when x ∈ L, then Hout incurs
zero penalty. However, from the definition of QMA com-
pleteness, we see that Pr[accept] is 1−ϵ which means that
we might end up with |0⟩ at time T with a probability ϵ.
So we have E0(x ∈ L) ≤ ⟨η|Hout|η⟩ = ϵ

T+1 .

Soundness gives Ehigh

The QMA soundness gives Ehigh and ensures the gap
between Ehigh and Elow. Due to the complication of the
calculation, I only briefly outlined the procedure, the de-
tailed calculation is shown in [3].

• Apply change of basis toHprop and then diagonalize
the matrices by Fourier transform. The Hamilto-

nian has a spectral gap of π2

2(T+1)2

• Diagonalizing H ′ = Hin + Hout, and since the en-
ergy penalty is at least 1, so the total Hamiltonian
has a spectral gap of 1.

• Since there is a small probability ϵ of wrongly ac-
cepting a computation, so we can assume there is
a large relative angle between the null spaces of
H ′ and Hprop. By considering the projection of
H ′ +Hprop onto null spaces and relative geometry
between null spaces (and pages of algebra), we get

a relationship that E0(x /∈ L) ≥ 1−
√
ϵ

(T+1)3

To conclude, we start from QMA problem conditions and
show that they can be reduced to a problem of determin-
ing whether the ground state energy of a Hamiltonian is
below a value Elow or above a value Ehigh. This is getting
close to the definition of local Hamiltonian problem!

Complication of locality

To fully analyze the Hamiltonian H, we need to con-
siderHclock and its locality. One simple way of construct-
ing the |t⟩ states is to have |t = 0⟩ = |00...0⟩ , |t = 1⟩ =
|10...0⟩ , |t = 2⟩ = |11...0⟩ , ..., |t = T ⟩ = |11...1⟩. The
Hamiltonian is defined as Hclock = ΣT−1

t=1 (|01⟩ ⟨01|)t,t+1

[3] so that only strings that do not have 0 followed by
1 are valid representations. In Hprop, there is a tensor
product of the form Ut ⊗ |t⟩ ⟨t− 1|. The term |t⟩ ⟨t− 1|
acts on 3 qubits, and Ut acts on 2 qubits by definition.
The other Hamiltonians only involve terms acting on less
than 5 qubits. This means that our Hamiltonian is a 5-
local Hamiltonian, and we conclude that 5-local Hamil-
tonian is QMA-hard.

RELATED CONCLUSIONS FOR
QMA-COMPLETENESS AND k-LOCAL

HAMILTONIAN

Going beyond QMA-hard for 5-local Hamiltonian, if
we wish to prove QMA-completeness, we need to show
that the local Hamiltonian problem is in QMA other than
showing it is QMA-hard. For this proof, I would like to
redirect readers to Proposition 14.2 in [2].
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QMA-completeness for k ≥ 3 has been known for a
while before the publication of the milestone paper by
Kempe, Kitaev and Regev [1]. The authors proved that
2-local Hamiltonian problem is also QMA-complete using
two independent methods. The first method is based on
projection lemma, which allows us to successively cut out
parts of the Hilbert space by giving them large penalty.
The second method relies on third order perturbation
theory. Both methods are rather long and complicated,
and I would like to revisit this paper when I have the
chance.
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