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This paper aims to give a brief introduction to the quantum marginal problem. It provides an
overview of several important results and a bibliography for more in-depth reading.

INTRODUCTION: A CLASSICAL ANALOGY

Given a multivariate probability distribution, we can
easily compute marginal distributions in one or more of
its variables. The reverse process - given a set of (puta-
tive) marginal distributions, to find a joint distribution
having such margins - is known as the classical marginal
problem. In general it is not easy. For marginals involv-
ing two or more variables such a distribution does not
necessarily exist; thus one part of the problem is deter-
mining compatibility conditions that will guarantee the
existence of a solution. When such conditions are met we
may ask the nontrivial question, “is the solution unique?”
- and, if the answer is “no” we can try to describe all
possible joint distributions having the given marginals,
and to determine whether there exists a solution having
specific properties (e.g.: in the discrete case, a joint dis-
tribution whose entries are multiples of a given fraction).

THE QUANTUM MARGINAL PROBLEM

This problem has a close quantum mechanical ana-
log. Given a multi-component system in a pure state we
can take partial traces to find density matrices for the
states of subsystems of one or more components. The
pure quantum marginal problem consists of “reverse en-
gineering” this: i.e., determining whether a given set of
density matrices is the set of “marginals” (partial traces)
of some larger, global pure state density matrix. A vari-
ant of this problem asks the question for a global ma-
trix with a given spectrum (i.e., not necessarily pure -
which would have the spectrum (1,0,...,0) - but having
some prescribed mixed state). Yet another variant is
the question of whether a system with a given number
of components has an absolutely maximally entangled
(AME) state (pure global state such that any bipartition
is maximally entangled - i.e., having maximally mixed
marginals). Naturally, when a solution exists there are
the questions about how to construct it and whether or
not it is unique.[1]

These questions have practical applications in quan-
tum chemistry, condensed matter physics, and quantum
error-correcting codes.[2,3,4]

In the broadest sense, both the classical and quantum
marginal problems are concerned with using information

about parts of a system to deduce some of its global prop-
erties .

As with the classical case, the quantum marginal prob-
lem is more difficult than the reverse process of com-
puting marginals. A natural first question is whether
the problem lends itself to a brute force computational
approach. For small systems (say, two or three qubits)
or special cases this might work; however,in general the
problem is known to be computationally hard, making
this approach not feasible. (In fact, it has been shown
that the problem remains computationally hard even for
a quantum computer.)[5] Thus we have to resort to clev-
erness.

SOME KNOWN RESULTS

Compatibility conditions (i.e., necessary conditions for
a set of putative marginals to correspond to a global state
matrix with given properties) typically take the form
of inequalities involving eigenvalues or functions thereof.
This is intuitive: given a set of marginals compatible with
a particular global state, one would expect that slightly
perturbing the eigenvalues of the marginal and global ma-
trices would preserve compatibility(at least in some di-
rections of perturbation), and so the problem boils down
to determining boundaries beyond which the compatibil-
ity no longer holds.

For bivariate marginals, strong subadditivity of the von
Neumann entropy [6] gives a compatibility constraint:

S(ρABC) ≤ S(ρAB) + S(ρBC)− S(ρB).

(Note that although this is a necessary condition, it is by
no means necessarily sufficient!)

A few basic results can be deduced from facts about
tensor products:

1) For a pure state ψ ∈ HA⊗HB the marginals ρA and ρB
have the same spectra (up to having more or fewer zero
eigenvalues when HA and HB have different dimensions).
Conversely, if ρA and ρB have the same spectra (again, up
to more/fewer zeros), then a pure state with marginals ρA
and ρB exists and is given by ψ =

∑
i λiαi⊗βi, where αi

and βi are the respective eigenbasis vectors of ρA and ρB
with eigenvalue λi (this is the Schmidt decomposition).
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2) In the univariate marginal case (i.e., when the given
local density matrices describe non-overlapping compo-
nents) the existence of a global state with a given spec-
trum depends only on the spectra of the local density ma-
trices, since these can be diagonalized by local unitaries.
In particular, to answer the question whether an n-qubit
system with given density matrices for each qubit could
have a (global) density matrix with a given spectrum, we
need only concern ourselves with the compatibility of the
global spectrum with the local (individual qubit) spectra.

In 2004 Klyachko solved the compatibility problem for
a multi-component system with given global state spec-
trum and univariate marginals. Prior to this there were
several partial results, e.g.:

Theorem (Higuchi et al. [7] Bravyi [8])
A pure n-qubit state with univariate margins ρi exists iff
their minimal eigenvalues λi satisfy the inequalities

λi ≤
∑
j ̸=i

λj .

Theorem (Bravyi [8])
A mixed two-qubit state ρAB with spectrum λ1 ≥ λ2 ≥
λ3 ≥ λ4 and marginals ρA, ρB exists iff the minimal
eigenvalues λA, λB of these marginals satisfy the inequal-
ities

λA ≥ λ3 + λ4, λB ≥ λ3 + λ4

λA + λB ≥ λ2 + λ3 + 2λ4

|λA − λB | ≤ min{λ1 − λ3, λ2 − λ4}.

Higuchi [9] established conditions for compatibility of
a pure state ψ ∈ HA ⊗HB ⊗HC with marginals ρA, ρB ,
and ρC . These conditions take the form of 7 inequalities
(up to permutation of A, B, and C).

The significance of Klyachko’s 2004 paper is that it
established a “general recipe for producing marginal in-
equalities” for these kinds of systems. As an appendix, it
includes 19 pages (!) of inequalities giving compatibility
requirements for some of the smaller systems (3 qubits,
4 qubits, 2 qutrits, etc).

The paper presents two methods of approach, one in-
volving algebraic geometry and the other representation
theory of symmetric groups. The gist of the first ap-
proach is, for a 2-component system, to consider the set
of possible spectra a and b of Hermitian matrices on the
two components HA and HB , taken modulo an equiva-
lence relation (preserving ordering of sums of their eigen-
values); partition the resulting space into “cubicles” and

“edges”, and establish that a mixed state ρAB with mar-
gins ρA and ρB exists if and only if the spectra of ρAB ,
ρA, and ρB satisfy inequalities involving (representatives
of equivalence classes of) eigenvalues of spectra a and b
in certain cubicles. (See Theorem 4.1.3 in [10].) It is a
rather involved argument, but the examples on p. 11 of
the paper demonstrate the idea nicely. This approach
generalizes to systems with more than two components.

The gist of the second approach is to associate Young
diagrams to spectra of ρAB , ρA, and ρB . Since each
Young diagram with n cells corresponds to a particular
conjugacy class - and hence a particular irreducibe rep-
resentation - of Sn, this associates an irreducible repre-
sentation of Sn (for some n ∈ N) to each spectrum. The-
orem 5.3.1 then establishes that the following are equiv-
alent:

1) For some m > 0 the Kronecker coefficient
g(mλ,mν,mµ) is nonzero,

2) There exists a mixed state ρAB with spectrum ν and
marginals ρA, ρB with spectra λ, µ,

3) There exists a pure state ρABC with marginals ρA,
ρB , and ρC having spectra λ, µ, ν.

The Kronecker coefficient g(λ, µ, ν) gives the number
of times an irreducible representation Sλ of Sn appears
in the direct sum decomposition of Sµ⊗Sν for irreducible
representations Sµ and Sν of Sn. This is a very interest-
ing result; however, at present Kronecker coefficients are
not well understood (i.e., there is no known algorithm for
computing them). Thus the value of the theorem lies in
establishing the theoretical connection between represen-
tation theory and the marginal problem rather than in
practical application. This connection has subsequently
been elaborated upon and used to prove facts about sym-
metric groups in connection with the quantum marginal
problem.[10,11]
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