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This paper constitutes an overview of the study of gapped quantum spin liquids using their
entanglement properties. The detection of topological order in candidate wave functions by using
the topological entanglement entropy is treated. This can be used to identify quantum spin liquid
ground states. A concrete example is given for a chiral spin liquid on the torus, for which the
topological entanglement entropy is computed with a Variational Monte Carlo algorithm.

I. INTRODUCTION

Quantum spin liquids (QSLs) [1] are intriguing
phases of strongly correlated spins that do not mag-
netically order even at zero temperature. They pos-
sess various exotic properties, such as fractionalized
excitations, long-ranged quantum entanglement and
are not described by a local order parameter. Quan-
tum spin liquids can be gapped or gapless. The for-
mer category of QSLs also has the amazing property
of hosting topological order (TO), a robust ground
state degeneracy that depends on the topology of
the manifold on which the system lives.

Due to their strongly interactive nature, QSLs are
quite hard to study. Given a wave function, a chal-
lenging task is to determine if it describes the ground
state of a QSL. However, it turns out that the en-
tanglement can be of great use for answering this
question.

The goal of this short paper is to illustrate how
the topological entanglement entropy (TEE) can be
used to detect topological order in trial wave func-
tions, allowing to identify gapped quantum spin liq-
uids [2]. The paper is structured as follows: Section
II presents a brief review of the topological entan-
glement entropy, while Section III illustrates how to
build a QSL trial wave function, specifically for a chi-
ral QSL. Section IV shows how to extract the TEE
and to compute it via a Variational Monte Carlo al-
gorithm, while we conclude in Section V.

II. TOPOLOGICAL ENTANGLEMENT
ENTROPY

Consider a two-dimensional gapped system par-
titioned in two subregions A and B, with a con-
tractible boundary. The amount of quantum entan-
glement between the two subsystems A and B can
be quantified by the Renyi entropies (of region A),
defined as

Sn(A) =
1

1− n
log

(
Tr ρnA

)
, (1)

where ρA is obtained by tracing out the degrees of
freedom of region B. The Renyi entropies respect
the area law [3]

Sn(A) = anL− b0γ +O(1/L) , (2)

where L is the boundary length between A and B, an
is a n-dependent non-universal coefficient and b0 is
the number of disconnected pieces of the boundary.

The coefficient γ is called the topological entan-
glement entropy (TEE) [4, 5] and is a robust uni-
versal property of the ground state wave function.
It is only nonzero for phases with topological or-
der. It has been shown that γ = logD, with
D =

√∑
a d

2
a, the total quantum dimension of the

topological phase. The sum over a runs over all the
different types of anyons, while da is the quantum
dimension of anyon a. This name comes from the
fact that for a large number M of anyons of type
a, the Hilbert space dimension goes as dM−2

a [6].
Note that for abelian anyons, da = 1, while for non-
abelian anyons, da > 1.

Therefore, we see that the TEE is a powerful tool
to identify gapped QSLs. Indeed, by computing the
TEE from a ground state wave function, we imme-
diately know if the associated phase has topological
order and is thus a valid gapped QSL candidate (as-
suming it is also SU(2)-symmetric).

III. TRIAL WAVE FUNCTIONS FOR
GAPPED QSLS

Let us now illustrate how to build a trial gapped
QSL wavefunction. We consider the specific case
of a chiral spin liquid (CSL) [7], which is a ground
state of SU(2) spin singlets that breaks parity and
time-reversal. Even if this is a purely bosonic (spin)
system, it is convenient to express spin operators in
terms of fermion operators, S⃗ = 1

2f
†σ⃗f .

The first step to build the wave function is to start
with a model of fermions hopping on a lattice. For
a CSL, we consider a square lattice with a π flux
through every plaquette with the following mean-
field Hamiltonian [2]
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H =
∑
⟨i,j⟩

tijf
†
i fj + i

∑
⟨⟨i,j⟩⟩

∆ijf
†
i fj , (3)

where the first term is a hopping between nearest-
neighbors (nn), while the second term represents an
imaginary hopping along the diagonals (see Fig. 1
for more details)

Figure 1: Square lattice on which the Hamiltonian
(3) is defined. For nn hopping, tij = t along the
vertical direction. For full horizontal lines, tij = t,
while tij−t for dashed horizontal lines. For diagonal
hoppings, ∆ij = i∆ along the arrows and ∆ij =
− i ∆ against the arrows. Figure taken from [3].

At this point, the ground state of the mean-field
Hamiltonian (3), denoted |ψ⟩, is simply an untangled
fermionic product state without any long-range cor-
relations. The candidate CSL ground state |CSL⟩
is obtained by Gutzwiller projecting the mean-field
state |ψ⟩: |CSL⟩ = PG |ψ⟩, with PG =

∏
i(1 −

ni,↑ni,↓) |ψ⟩ and where ni,↑/↓ is the number of up/-
down spins on site i. This procedure has projected
|ψ⟩ to the Hilbert space subject to the constraint of
a single electron/spin per site. Moreover, it has gen-
erated long-range entanglement between the spins,
as it will be shown in the next section.

IV. MEASUREMENT OF THE TEE IN QSL
WAVE FUNCTIONS

Now that we have an SU(2)-symmetric candidate
ground state wave function for a chiral spin liquid,
the goal is to determine if it has topological order.
To do so, the strategy is to compute the topological
entanglement entropy from |CSL⟩.

A. Extraction of the TEE

A priori, extracting γ by computing the entangle-
ment entropy of a single region A is rather challeng-

ing, since for a large boundary length (regime where
terms of order 1/L can be neglected), the leading
term proportional to L completely dominates over
the term with γ in Eq. 2. However, by following the
judicious trick from [4], which consists of considering
the appropriate linear combination of entanglement
entropies between three rectangular regions (repre-
sented in Fig. 2), the contribution of γ can be iso-
lated as follows

−γ = S2(A) + S2(B) + S2(C)− S2(AB)

− S2(AC)− S2(BC) + S2(ABC) .
(4)

Note that the second Renyi entropy has been used
instead of the von Neumann entropy, which will be
justified in the next section.

Figure 2: Illustration of the three regions where the
second Renyi entropy S2 is computed. The full sys-
tem is a 12×12 square lattice with periodic boundary
conditions, which means that the system lives on a
2-torus. The squares A and B have LA × LA sites,
while the rectangle C has LA × 2LA sites. Figure
taken from [3].

However, since S2(A) = S2(B), S2(AB) = S2(C)
and S2(AC) = S2(BC) [2], the expression for γ re-
duces to

γ = −2S2(A) + 2S2(AC)− 2S2(ABC) . (5)

B. Calculation of the TEE with a Variational
Monte Carlo algorithm

The objective is now to compute the three en-
tanglement entropies appearing on the RHS of Eq.
(5), which is achieved by using a Variational Monte
Carlo (VMC) algorithm. Naively, one might think
that γ can be extracted from the von Neumann en-
tropy (n = 1). However, it turns out that there are
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no known Monte Carlo algorithms capable of com-
puting S1 directly. Nevertheless, a clever method
developed in [8] allows to compute the second Renyi
entropy, which is why S2 is used to extract γ.

Let us illustrate how this technique works. Con-
sider a system divided in two subregions A and B.
The idea is to build two copies of a normalized pure
state defined on the whole system

|ψi⟩ =
∑
aibi

Caibi |ai⟩ |bi⟩ , (6)

where i = 1, 2 labels the copy, while |ai⟩ and |bi⟩
are respectively complete basis on A and B. Let us
now consider a product state between the two inde-
pendent copies. The SWAP operator over region A,
SWAPA, is then defined by acting between the two
copies by exchanging the configurations in region A

SWAPA |ψ1⟩ |ψ2⟩

= SWAPA

[∑
a1b1

Ca1b1 |a1⟩ |b1⟩

⊗
∑
a2b2

Ca2b2 |a2⟩ |b2⟩

]
=

∑
a1b1

Ca1b1

∑
a2b2

Ca2b2 |a2⟩ |b1⟩ ⊗ |a1⟩ |b2⟩ .

(7)

Using this result, it can be shown (see Appendix A)
that the second Renyi entropy is given by

S2(ρA) = − log
(
⟨SWAPA⟩

)
, (8)

where the expectation value is taken with respect to
the state |ψ1⟩ |ψ2⟩.

By introducing the configurations α1 = a1, b1,
α2 = a1, b1, β1 = a2, b1 and β2 = a1, b2, the ex-
pectation value of SWAPA can be rewritten as [9]

⟨SWAPA⟩ =
∑
α1α2

λ(α1)λ(α2)f(α1, α2)

= ⟨SWAPA,mod⟩ ⟨SWAPA,sign⟩ ,
(9)

where λ(αi) = Cαi
C∗

αi
and f(α1, α2) =

Cβ1
Cβ2

Cα1
Cα2

. In
the second line, the expectation value of the SWAP
operator has been decomposed as a product of a
modulus contribution and a phase contribution in
order to deal with the sign of f(α1, α2) which can
be negative. See [9] for more details on the VMC al-
gorithm and the subtleties due to potential negative
signs.

C. Results for a chiral spin liquid

The Variational Monte Carlo technique presented
above can then be applied to the CSL candidate
wavefunction presented in Section III. Note that in
order for the subleading (O(1/L)) terms in Eq. (2)
to be small, the boundary length LA must be much
bigger than the correlation length ξ ∼ ∆−1. Hence,
neat results are obtained by taking a large gap ∆
[2].

As a consistency check, it is useful to compute the
TEE for the unprojected (mean-field) wave function.
For LA = 3, it is found that γ = −0.0008±0.0059 [2],
which is consistent with the expected result of γ =
0. Indeed, as mentioned previously, the unprojected
wave function does not have topological order.

Moving-on to the Gutzwiller-projected wave func-
tion, it is found that γ = 0.343 ± 0.012 and γ =
0.344 ± 0.043 for LA = 3 and LA = 4 respectively
[2], which is in great agreement with the expected
value of γ = log

√
2 ≈ 0.347. Indeed, the chiral spin

liquid on the torus has two degenerate ground states
and two types of abelian anyons [10], which means
that D =

√
2.

Note that the VMC algorithm presented in this
paper has been applied to other phases hosting topo-
logical order [2], such as a Z2 spin liquid or to frac-
tional quantum Hall (Laughlin) states. The calcu-
lated TEEs are in good agreement with the theoret-
ical predictions.

V. CONCLUSION

Gapped quantum spin liquids are exotic phases of
matter lying beyond Landau’s paradigm and host-
ing topological order. In this paper, a method to
detect TO in candidate wave functions for gapped
QSL using the topological entanglement entropy has
been detailed. For the specific case of a chiral spin
liquid on a torus, the calculated TEE with a Varia-
tional Monte Carlo algorithm yields values in excel-
lent agreement with the expected results.

Finally, it is important to mention that the to-
tal quantum dimension D, obtained from γ, does
not constitute a complete description of the topo-
logical order. Indeed, distinct phases can have the
same D, while not having the same individual quan-
tum dimensions da for their respective anyons [3].
However, it turns out that it is possible to extract
the statistics and braiding of these anyons directly
from the TEE. This work has been done in [11] and
relies on the important fact that the topological en-
tanglement entropy has a ground state dependence
when subregions have boundaries that are not con-
tractible.
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Appendix A: Algorithm to compute S2

This appendix presents the derivation of Eq. (8). Using Eq. (7), the expectation value of the SWAP
operator is

⟨SWAPA⟩ = ⟨ψ1| ⟨ψ2| SWAPA |ψ1⟩ |ψ2⟩

=
∑
a1b1

∑
a2b2

C∗
a1b1C

∗
a2b2

[
⟨a1| ⟨b1| ⊗ ⟨a2| ⟨b2|

]∑
a′
1b

′
1

∑
a′
2b

′
2

Ca′
1b

′
1
Ca′

2b
′
2

[
|a′2⟩ |b′1⟩ ⊗ |a′1⟩ |b′2⟩

]

=
∑
a1b1

∑
a2b2

∑
a′
1b

′
1

∑
a′
2b

′
2

C∗
a1b1C

∗
a2b2Ca′

1b
′
1
Ca′

2b
′
2
δa1a′

2
δb1b′1δa2a′

1
δb2b′2

=
∑
a1a2

[∑
b2

Ca1b2C
∗
a2b2

][∑
b1

Ca2b1C
∗
a1b1

]
.

(A1)

By defining the matrix elements of ρA as

(ρA)a1a2
=

∑
b

Ca1bC
∗
a2b , (A2)

the expectation value becomes

⟨SWAPA⟩ =
∑
a1a2

(ρA)a1a2
(ρA)a2a1

= Tr(ρ2A) , (A3)

which implies Eq. (8).

http://dx.doi.org/ 10.1126/science.aay0668
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aay0668
http://dx.doi.org/10.1103/PhysRevB.84.075128
http://dx.doi.org/10.1103/PhysRevB.84.075128
http://dx.doi.org/10.1088/1367-2630/15/2/025002
http://dx.doi.org/10.1088/1367-2630/15/2/025002
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/ 10.1103/PhysRevB.39.11413
http://dx.doi.org/ 10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevLett.107.067202
http://dx.doi.org/10.1103/PhysRevLett.107.067202
http://dx.doi.org/10.1038/ncomms6137
http://dx.doi.org/10.1038/ncomms6137
http://dx.doi.org/ 10.1103/PhysRevB.85.235151

	Introduction
	Topological entanglement entropy
	Trial wave functions for gapped QSLs
	Measurement of the TEE in QSL wave functions
	Extraction of the TEE
	Calculation of the TEE with a Variational Monte Carlo algorithm
	Results for a chiral spin liquid

	Conclusion
	References
	Algorithm to compute S2

