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We review the s-source framework proposed in [1] and expanded in [2,3,4]. In particular, we
explore its relation and implications to gapped and gapless states. For gapped states, physical
arguments are given to justify the area law for gapped states. For gapless states, we study a class
of them that do satisfy the area law using local entanglement thermodynamics and relate it to the
s-sourcery. Finally, we present examples of gapped and gapless RG circuits that implement the
hierarchical growth given by the s-sourcery scheme.

INTRODUCTION

Entanglement entropy, a measure of the degree of en-
tanglement between subsystems of a quantum system,
has been the subject of intense research in the field of con-
densed matter and quantum information in recent years.
The area law, which states that the entanglement en-
tropy between two regions of a system is proportional to
the area of the boundary between those regions, has been
widely observed in gapped systems, where the energy gap
between the ground state and the first excited state is
nonzero. However, there exist no formal proof outside
of Hastings seminal work in one dimension, at least for
conventional gapped phases. Moreover, if we consider
gapless states, there exist examples which do not follow
the area law as conventional metals and conformal field
theories (CFTs) in 1 + 1 dimensions.

An interesting approach to try to answer some of these
questions was proposed in [1] and is based on renormal-
ization group (RG) ideas. In this paper, we review its
framework and the consequences if phases of matter are
RG s-source fixed points (to be defined in the next sec-
tion). In particular, we will look the consequences for
gapped phases and study its connection to a certain class
of gapless systems. Lastly, we present an example of an
s = 1 source RG fixed point for gapless systems known
as the square-root states.

S-SOURCE FRAMEWORK

Let’s start with some context and definitions. We con-
sider quantum systems whose Hilbert space is defined by
associating smaller Hilbert spaces Hx to patches of space
labelled by some coordinate x. Then couple them by the
action of a local Hamiltonian H =

∑
xHx that couples

locally patches x. Additionally, we will consider fami-
lies of systems labelled by the system size L: HL with
groundstates |ψL⟩.
We are interested in finding a finite-depth unitary that

grows smaller groundstates |ψL⟩ at size L plus ancillas
into the groundstate |ψ2L⟩ at size 2L. One naive expec-
tation is to assume that we can make the groundstate ψ2L

out of only ancillas. Yet, only trivial phases of matter are

adiabatically connected to the product state. Thus, it is
not possible to find a gapped path from a product state
to nontrivial phase using a finite-depth circuit.

Instead, we can think that using nontrivial ground-
states at size L as seeds to feed into the unitary would
help build the groundstate at larger size 2L. This is
where the s-source framework comes into play. A s-
source RG fixed point in d -dimensions is a system whose
groundstate on (2L)d sites can be made from s copies of
the groundstate on Ld sites plus some unentangled ancil-
las using a quasilocal unitary. The value s is assumed to
be the smallest one for which the procedure is possible.

Some examples are in order. Mean-field/trivial states
is an s = 0 RG fixed point. Toric code/Z2 gauge theory
is an s = 1 RG fixed point. All massive field theories are
s ≤ 1 RG fixed points since we can put the system into
a background geometry of an expanding universe which
maps it from size L to 2L without closing the gap. A
more exotic state like Haah’s cubic code is s = 2 RG
fixed point in d = 3 dimensions. More examples can be
found in [1].

We now present some of the implications of a state
being a s-source RG fixed point.

Recursive entropy bounds

The entropy of a region of size 2R cannot be more than
the sum of the entropies of the s regions R used plus an
additional term coming from the unitary evolution,

sS(R)− k′Rd−1 ≤ S(2R) ≤ sS(R) + kRd−1, (1)

where the quasilocal unitary can at most gener-
ate/remove area law entanglement leading to the up-
per/lower bound. This is a consequence of the small
incremental entangling by a local Hamiltonian studied
in class. Interestingly, by saturating the bound, we can
show that any s ≤ 1 fixed point in d > 1 satisfies the
area law theorem. Moreover, by making weak spectral
assumptions, one can show that the possible range of s
is s ≤ 2d−1.
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Groundstate degeneracy

The groundstate degeneracy G(L) of a s-source RG
fixed on a d -torus of linear size L obeys

G(2L) = G(L)s. (2)

This is because we can construct different groundstates
at scale 2L by choosing any of the G(L) degenerate but
locally indistinguishable groundstates from each of the s
copies at scale L.

s is a property of the phase

The smallest possible value of s serves as a classifi-
cation axis, quantifying the amount of entanglement in
the groundstate. This is true since the adiabatic path
connects any two representatives within the same phase.

RG circuit implies a MERA representation

As seen in class, the multiscale entanglement renor-
malization ansatz (MERA) is an important numerical
method which allows for efficient computation of observ-
ables by organizing the entanglement in the state scale by
scale. Numerical algorithms implementing the s-sourcery
and MERA representations can be found in [4].

Entropy scaling in s-source fixed points

Let’s assume that the recursion relation in Eqn. (1) is
saturated. Then, the entropy at size R scales as

S(R) ∼ Rd−1

logR∑
l=0

( s

2d−1

)l

=


Rd−1, s < 2d−1

Rd−1 log(R), s = 2d−1

Rd−1+α, s = 2d−1+α

(3)
where as long as s < 2d−1, the area law is obeyed.

We can find a formula for the groundstate degeneracy
scaling as well. Taking the log of Eqn. (2), we find that

logG(2L) ∼ slog(L) logG(2), (4)

where logG(2) denotes the ground state degeneracy in a
small system. The ground state degeneracy then scales
as slog(R). If s = 2d−1, so that the area law is violated
logarithmically, then the number of ground states need
to grow as logG ∼ Ld−1. This fact will be important for
the following subsection.

AREA LAW FOR GAPPED STATES

The fundamental assumption is that all stable gapped
phases of matter are generalized s-source RG fixed

points. And let’s consider gapped phases without pro-
tected edge states, denoting as ρA the reduced density
matrix of the groundstate in a subregion A. Let σA be
the density matrix with maximal entropy locally in re-
gion A which is consistent with ρA, i.e. ⟨Oi⟩σA

= ⟨Oi⟩ρA

for all local operators Oi supported in region A. Using
variational methods, one can show that this state must
be a local Gibbs state

σA =
1

Z
e−H̃A (5)

where H̃A =
∑

x∈A gxHx and gx are Lagrange multipli-
ers such that its locally consistent with ρA as described
above. We also know that since σA is the maximal en-
tropy state that

S(ρA) ≤ S(σA). (6)

Now, H̃A is locally gapped away from the boundary ∂A
but it may have accidental edge states. However, we can
repair this by perturbing with V localized near ∂A.

Let’s bound S(σA) by considering the thermal state
of the fully gapped Hamiltonian H̃A + V labelled as σ′

A.
Since we know that the thermal state minimizes the free
energy then

⟨H̃ + V ⟩σ′
A
− S(σ′

A) ≤ ⟨H̃ + V ⟩σA
− S(σA), (7)

which after some rearrangements gives

S(σA) ≤ S(σ′
A) + [ ⟨H̃ + V ⟩σA

− ⟨H̃ + V ⟩σ′
A
]. (8)

The term in brackets is proportional to |∂A| since V is
localized in the boundary and the expectation values of
local Hx are approximately the same for σA and σ′

A.

This gives

S(σA) ≤ S(σ′
A) +O(|∂A|), (9)

which we can further bound by remembering that H̃A+V
is in the same phase as a gapped Hamiltonian on A with
diverging local gap away from the boundary and thus
bounded by the groundstate degeneracy G of H̃A + V ,

S(ρA) ≤ S(σA) ≤ log(G) +O(|∂A|). (10)

Using Eqn. (3) and (4), we see that violating the area
law with logarithmic correction needs s = 2d−1. This
implies that the groundstate degeneracy grows only like
logG ∼ Rd−1 as we have seen before. Yet, this violates
the lower bound in (10) since we have Rd−1 logR on the
left and only Rd−1 on the right. Hence, it must obey
area law even with s = 2d−1. If we further assume that
the entropy is saturated, this implies that there are no
gapped phases with s = 2d−1. Nonetheless, We obtain a
general law for gapped phases. Yay!
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GAPLESS STATES AND S-SOURCERY

So far we have studied in the previous sections gapped
states which satisfy the area law. And while this is be-
lieved to hold for all of these states, for gapless phases
there exist exceptions. Most notably, conventional metals
and CFTs in 1 + 1 dimensions. Short-distance correla-
tions usually lead to area law behavior. To violate this
one would require some long-range correlations or many
low-energy degrees of freedom (as it is the case for met-
als with Fermi surface). Instead, in this section, we will
follow [2] and study a class of gapless states which, under
certain thermodynamic assumptions, do follow the area
law. We prove this by recasting the entanglement entropy
problem into a local entanglement thermodynamics one,
finding an area law bound and connecting the result with
the s-sourcery framework.

Let’s set up the problem. Consider a d-dimensional
local Hamiltonian H =

∑
X HX with a 1/poly(L) gap

which supports scale invariance and whose groundstate
is |g⟩. Define the reduced density matrix of region A
as ρA = trĀ |g⟩⟨g|. Define also the state of maximum
entropy σA which gives the same expectation values of
all HX inside A just as ρA. Since σA is the maximum
entropy state it means that it should be a Gibbs state

σA =
e−

∑
x Hx/T (x)

Z
(11)

where T (x) are again Lagrange multipliers such that
⟨H⟩ρA

= ⟨H⟩σA
, but also SρA

≤ SσA
. Thus, we can

bound the entropy of ρA using the entropy of σA.
Given that we are interested in the scaling with region

size of the entropy and energy of σA, we can estimate
them by using the local thermodynamic expressions

SσA
= − tr(σA log σA) ∼

∫
ddx s(T (x)) (12)

where s(T ) is the bulk thermodynamic entropy density.
A similar expression can be found for the energy. These
estimates are true if ∇Tx

Tx
≪ ξ−1

x . Furthermore, let us
specify the thermodynamic properties of the scale invari-
ant state: the energy related to momentum as ω ∼ kz

where z is the dynamical exponent and the entropy den-

sity related to temperature as s(T ) ∼ T
d−θ
z where θ is

the hyperscaling violation exponent.
Let’s proceed in estimating the integral by using a sim-

ple geometry as shown in Figure 1. Suppose the region
A is a half space in d-dimensions with translation invari-
ance in d−1-transverse dimensions to the boundary, each
of size R with the remaining dimension having a width
of ω. This means that T (x) depends only on the dis-
tance to the boundary x ranging from a short-distance
cutoff a (like the lattice spacing) to the UV cutoff (width
ω of the half space). Since energy scales with momen-
tum as ω ∼ kz and there’s no other length scale in the

FIG. 1: Geometry used to derive the entanglement entropy
bound. Figure taken from [2].

problem, this determines the scaling of the temperature
to be T (x) ∼ x−z. In fact, there exist two other solu-
tions consistent with scale invariance which I won’t focus
in this paper but that are either relevant for frustration
free Hamiltonians (T = 0) or can be ruled out due to too
much energy (T = ∞).
Assuming this, we can integrate the entropy density

SσA
∼ Rd−1

∫ ω

a

dxxθ−d = Rd−1

{
ln(ω/a), θ = d− 1

ω−d+θ+1− a−d+θ+1, other

(13)
which converges for d > θ + 1 and means that for values
θ < d− 1 it obeys the area law and for θ = d− 1 it gives
a logarithmic divergence with ω. Since we are upper
bounding the entropy SρA

, it does not follow that θ =
d− 1 violates the area law. We also mention that we can
do the integral over the energy density which leads to
any local theory satisfying the assumptions to must have
z + d > 1 + θ.
We can compare this result with the s-sourcery frame-

work. Suppose the scaling theory is an s-source RG fixed
point. Then, it means that it obeys the entropy bound
and the entropy scales as

S(R) ∼ Rd−1

ad−1

log(ω/a)∑
n=0

( s

2d−1

)n

= Sarea+Ssub+ . . . (14)

where the subleading term has the form

Ssub ∼ Rd−1

ad−1

ad−1−log(s)

ωd−1−log(s)
(15)

The coefficients in itself are not important as there may
be discrepancies but the scaling behavior should be the
same as the actual subsytem state ρA and its maximum
entropy related state σA (since there’s no phase transition
in going from ρA to σA). Hence, comparing to Eqn. (13)
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and demanding that the subleading terms match gives

s = 2θ (16)

which establishes a deep connection between thermody-
namics and entanglement.

RG CIRCUITS FOR GAPLESS STATES

An explicit class of examples of gapless s = 1 source
fixed points arise from classical statistical models given
by the so-called square-root states [3]. These are con-
structed as follows. Consider a classical model in d-
dimensions with partition function

Z =
∑
si

e−βh(si), (17)

where si represents a classical configuration, β is the in-
verse temperature and h is the classical Hamiltonian. We
can build the square-root state living in a quantum many-
body system in d-dimensions as

|ψ(h, β)⟩ =
∑
s

√
e−βh(s)

Z
|{si}⟩ , (18)

where now |{si}⟩ are orthonormal states, β is a coupling
and the Boltzmann weight determines the groundstate
wavefunction. We can also see that correlations in the
classical system are correlators of diagonal operators in
the quantum system, meaning that critical points in the
classical model become quantum critical points in the
quantum model.

More importantly, we can use the real-space RG
scheme to construct the quantum RG circuit. That is,
turn the classical RG map into a unitary transformation
which takes the state of size L plus ancillas to the state
of size 2L on a larger geometry

U |ψ⟩L ⊗ |0 . . .⟩ = |ψ⟩2L ⊗ |0′ . . .⟩ . (19)

In general, one may need to increase the on-site Hilbert
space to be infinite for this to be an exact map but one
can truncate the bond dimension if it’s interested in an
efficiently-contractible representation.

Let’s take 1D-Ising model as a case study. Its square-
root state is

|ψI⟩ =
1√
Z

∑
{si}

e
βJ
2

∑
i sisi+1 |{si}⟩ , (20)

which is the groundstate of the parent Hamiltonian

H =
∑
i

(−Xi + e−βJZi(Zi−1+Zi+1)). (21)

The reason why this model is chosen is because it’s an
exactly solvable example of an RG circuit as we shall

see. This is because the real-space RG of the 1D-classical
model after each step has the same structure but with
renormalized couplings. The renormalization procedure
consists of tracing half of the degrees of freedom (say the
odd spins) in the partition function Z∑

si

eβJ(si−1si) = 2
√
cosh(2βJ)

∑
even s̃i

eβ̃Js̃is̃i (22)

where the renormalized temperature is given by

β̃J =
1

2
ln cosh(2βJ). (23)

We then use this real-space RG transformation and
explore the resulting RG transformation for the state and
the Hamiltonian. Consider three neighboring sites with
the spins si±1 being fixed∣∣ψsi±1

i

〉
=

∑
si

e
βJ
2 (si−1si+sisi+1) |si−1, si, si+1⟩ , (24)

and apply the unitary Ui which disentangles the middle
spin si with its neighbors

Ui

∣∣ψsi±1

i

〉
=

√
2 cosh

1
4 (2βJ)e

β̃J
2 si−1si+1 |si−1si+1⟩ ⊗ |→i⟩

(25)
where |→⟩ is the eigenstate ofX with positive eigenvalue.
Then U =

∏
odd i Ui converts all odd sites into product

states and all even sites into a new Ising square root state
with renormalized temperature β̃

U |ψI(β)⟩2L = |ψI(β̃)⟩L ⊗
∏
odd i

|→i⟩ . (26)

Repeated applications of the RG circuit leads to a prod-
uct state of all spin-right and the unitary to the identity.
An sketch of the RG circuit is shown in Figure 2. We
can apply this same circuit to obtain how the Hamil-
tonian transforms. The resultant Hamiltonian has the
same form (21) but with renormalized β̃ and an over-

all constant 1
2e

−2β̃J(1 + e−2β̃J). We refer to the original
paper for the explicit form of the unitary Ui and the cal-
culations [3].
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