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The Petz recovery map is a prevalent tool in various fields working with quantum systems. This
brief review paper will provide a conceptual understanding of the Petz recovery map from a classical
information perspective. Moreover, the paper will discuss the methods in current advances within
the field to solve for a Petz recovery map exactly by looking into Gaussian channels, and approximate
results through an algorithmic method.

INTRODUCTION

The Petz transpose map has been a ubiquitous tool in
quantum information theory and has been at the fore-
front of research within this field. Originally discovered
by D. Petz in the 1980s [1], it was further rediscovered
within a different context in quantum error correction [2]
and within quantum statistical mechanics [3].

The Petz recovery channel can be thought of as a quan-
tum analog of Bayes theorem; it is the idea that there ex-
ists a channel Pσ,E

y−→x that can completely reverse the
action of the quantum channel Ex−→y(ρ). More on this
will be discussed later in the paper.

This paper will be a brief literature review on the
recent challenges in determining the method to obtain
the recovery channel Pσ,E

y−→x is. There is a wide ar-
ray of topics of interest within this subject from its use
in quantum thermodynamics [4], estimating approximate
reversibility [5] and applications quantum statistical me-
chanics [6] [7] and to quantum gravity [8]. This paper
looks into its applications in Fermionic Gaussian chan-
nels and a quantum algorithm to obtain Petz recovery
channels.

Hence, Section I is a brief mathematical introduction
to Petz map that will give readers a better conceptual
understanding of the material. Section II will discuss
the advances to solve the Petz recovery channel exactly
for Fermionic Gaussian Channels, and Section III will
discuss an approximate algorithm for the Petz recovery
channel.

I. CONSTRUCTION OF THE PETZ RECOVERY
MAP

Recall in the classical ”channel” case, the Bayes rule
determines the channel dynamics; which is to say that
p(y) =

∑
x p(x)p(y|x). Here, the quantum analog of

the classical channel p(y|x) is Ex−→y, and similarly, σx,
ρy are the quantum analog of the input state p(x), and
output state p(y) respectively. The analogies above can
be extended to the channel p(x|y) that has a quantum
analog that is Pσ,E

y−→x, which is the Petz recovery chan-
nel. Here, the superscripts are there for clarity, indicating
that it is a function of the input states σx, and the quan-

tum channel Ex−→y. The subscript indicates that this is
a channel to describe the reverse process of taking the
output ρy to the input σx. The construction of the Petz
recovery channel is as follows:

Pσ,E
y−→x(•) = σ

1
2
x E†

(
E(σx)−

1
2 (•)E(σx)−

1
2

)
σ

1
2
x (1)

This is comprised basically of three operations

1. ⋆ ≡ E(σx)−
1
2 (•)E(σx)−

1
2 (2)

2. ∗ ≡ E†(⋆) (3)

3. Pσ,E
y−→x(•) = σ

1
2
x ∗ σ

1
2
x (4)

where here, E† is the adjoint channel. It is important to
note that the Petz recovery channel is CPTP (Completely
Positive and Trace Preserving), since all the operations
in (2)-(4) are CP, and although each operation in (2)-(4)
is not individually TP, the overall operation by putting
them together, is TP. Recall that in Bayes theorem:

p(x|y) = p(x)p(y|x)
p(y)

we see the similarity between p(x|y) with Pσ,E
y−→x(•) as

follows: p(y) −→ (2), p(x|y) −→ (3) and p(x) −→ (4).

Hence, putting everything together, we can see that
the recovery channel, acting on the original channel, gives
back the original state. In other words:

Pσ,E
y−→x ◦ Ex−→y(•) = •

It is important to note here that although it is possible
to understand the forward channel process in Ex−→y, it
does not mean that the reverse is available. Although
there are some exact, and ”simple” results, such as in
situations containing unitary dynamics [9] and thermal
operations [7], to name a few, there is also a handful of
research in obtaining an approximate recovery channel,
as we will see in the last couple section.
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II. PETZ RECOVERY MAP FOR FERMIONIC
GAUSSIAN CHANNEL [10]

This work constructed a Petz recovery map for
Fermionic Gaussian channels using the Grassmann rep-
resentation of the Fermionic Gaussian channels. Let’s
consider a Hamiltonian that is quadratic in its Fermionic
creation and annihilation operators, given by;

H =
∑
ij

c†iKijcj + c†iAijc
†
j + ciA

†
ijcj (5)

Here, c, c† denote the annihilation and creation operators
that satisfy the anti-commutation relations, with K as a
hermitian matrix, and A defined to be an anti-symmetric
matrix, such that the Hamiltonian is hermitian. In this
case, the thermal states of the Hamiltonian, are defined
to be the Gaussian states, and are of the form;

ρ ≡ e−βH

Tr[e−βH ]
(6)

In addition, recall that the Petz recovery map is defined
with respect to a reference state σ. Let’s define Gξ as
the covariance matrix of the state ξ. Here the covariance
elements in the covariance matrix are defined to be;

C(x, y) ≡ 1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

The barred values denote the mean, and n is the sample
size.

Here, looking back to the Hamiltonian given by (5), it
is then possible to rewrite this in the Majorana Fermionic
basis, which satisfies the algebra;

γ2i−1 = (ci + c†i ), γ2i = i(ci − c†i ); {γi, γj} = 2δij

such that (5) transforms as:

H =
i

2

2n∑
ij

γiMijγj (7)

where M is a real anti-symmetric matrix defined by the
Pauli matrices.

It is then possible to define the 2n Majorana operators
by;

X = αI +

2n∑
k=1

∑
1≤a1≤...ap≤n

αa1a2...ap
γa1

γa2
...γap

where α ≡ 2−nTrX. Instead of the Majorana basis,
it is more favorable for the calculations to move to the
Grassmann variables. Recall that the Grassmann vari-
ables are given by θ, η, ... follows the anti-commutation
relation θiθj + θjθi = 0, and subsequently, θ2i = 0. Since

a general operator in the Grassmann variables takes the
form

f = α1 +

2n∑
k=1

∑
1≤a1≤...ap≤n

αa1a2...ap
θa1

θa2
...θap

we note then that there is an isomorphism between the
states γi −→ θi, and I −→ 1. Hence, a Majorana operator
can be mapped into a polynomial of Grassmann variables
labeled by ω(X, θ), abbreviated as X(θ).
Thus, the channel is Gaussian if it has the integral

representation in the following form:

Ex−→y(X, θ) = C

∫
exp[S(θ, η) + iηTµ]X(µ)DηDµ (8)

where:

S(θ, η) ≡ i

2
(θT , ηT )

(
A B
BT D

)(
θ
η

)
=
i

2
θTAθ +

i

2
ηTDη + iθTBη (9)

A, B, and D are complex 2x2 matrices (A & D are
anti-symmetric matrices), and C is a complex number.
However, the preserve the CPTP nature of the quantum
channel, we are restricted to C = 1, D = 0. Moreover,
defining the matrix above in (9) in red to be N, we must
note that NTN ≤ 1.
Thus now, we know some of the general properties of

the matrix A, B, and D should be like, for the Petz re-
covery channel.
To develop the exact values for these matrices, let’s

find an integral representation for equations (2) - (4).
Here, We would like to use the properties that if E1 and
E2 are two CPTP Gaussian maps, then E1 ◦ E2 would
also result in a CPTP Gaussian map as well. Using this
property, and equation (8), it is possible to look for the
integral representations of (2) - (4) as a function of Grass-
mann variables. Doing so, one can find the result as fol-
lows:

A1 = −GE(σ), B1 =
√
I2n + (GE(σ))2,

C1 = 2ndet(I2n + (GE(σ))2)−
1
2 , D1 = GE(σ) (10)

A2 = 0, B2 = BT , C2 = 1, D2 = −A (11)

A3 = Gσ, B3 =
√
I2n + (Gσ)2,

C1 =
1

2n
, D1 = −Gσ (12)

Here, the subscript under the Matrix components A, B,
and D, and the complex number C indicates the steps
given in equations (2)-(4). For example, A1, B1, D1, and
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C1 are the complex matrix and number for the integral
representation of the Gaussian map given in equation (2).

Hence, putting everything together, one can find that;
the matrix components for the integral representation of
the Petz recovery map for a Gaussian linear map are
given by;

AP = Gσ −BPG
E(σ)BT

P , CP = 1, DP = 0

BP =
√
I2n + (Gσ)2BT

(√
I2n + (GE(σ))2

)−1

(13)

Hence, with these complex matrices given in (13), we
can show that a Petz recovery map can be constructed
exactly for a Gaussian channel, in terms of the covariance
matrix and the reference state σ. Similar work can be
done with Bosonic systems. This is just a brief review.
More complete derivations, with information regarding
the fidelity (a measure of similarity between two states),
and rotated Petz map for Gaussian channels, should refer
to the by Swingle et al. [10].

III. QUANTUM ALGORITHM FOR PETZ
RECOVERY CHANNEL [11]

Before proceeding further, it should be noted that this
formalism delivered by this paper, was developed through
the use of block encoding and the Quantum Singular
Value Transformation (QVST) formalism [12].

Block encoding - To be able to apply the algorithm to
a general transformation, the Block encoding method is
used. Suppose we are interested in the transformation of
|ψ⟩ −→∝ A |ψ⟩, where A is an arbitrary complex matrix.
If A happens to be non-unitary, non-square or has a large
operator norm, then block encoding techniques can be
utilized. Here we define a unitary matrix U as the block
encoding of A; essentially, embed A within the unitary,
and act the unitary to the state.

U =

[
A/α ·
· ·

]
←→ A = α(⟨0| ⊗ I)U(|0⟩ ⊗ I)

Where α ≥ ∥A∥. The idea is that first, on an n-qubit
input state |ψ⟩, |ψ⟩ is enlarged by the tensor product with
state |0⟩⊗ψ. The |0⟩ states are known as Ancilla bits and
are extra bits used for calculation purposes. In this case,
this is so that the unitary U can act on the enlarged
state and then we can measure the Ancilla bit. If the
outcome is |0⟩ (with probability 1/α2), then we know
that the n-qubit state |ψ⟩ −→∝ A |ψ⟩ /α. This process
is the probabilistic implementation of map A acting on
n-qubits.

QVST - In conjunction with block-encoding, QSVT is
a useful technique to provide the ability to do quantum
matrix arithmetic. Take the block encoding of density

operators ρ, given by Uρ, which through QSVT, trans-

forms Uρ −→ U f̃(ρ). Here f̃(ρ) is a polynomial approxi-
mation of some function f, applied to the singular values
of the density matrix ρ. Recall that the singular values s
satisfy det(sI− ρ) = 0. For example, if we look at equa-
tions (2) and (4), we see that the functions of interest are

f1(•) = •−
1
2 , f2(•) = •

1
2 .

Uρ =

[
ρ ·
· ·

]
QSV T−−−−→ U f̃(ρ) =

[
f̃(ρ) ·
· ·

]
As a technique that relies on approximations, it is im-

portant to introduce the error δ, such that it can now
be defined that U is an (a, δ) block encoding in A if
∥A− α(⟨0| ⊗ I)U(|0⟩ ⊗ I∥ ≤ δ. QSVT allows the us to
find an approximation f̃1(•) such that:

1

2

∥∥∥f̃1(•)− •− 1
2

∥∥∥ ≤ δ, 1

2

∥∥∥f̃2(•)− • 1
2

∥∥∥ ≤ δ
We see from here that block encoding, in conjunction

with QSVT, is used to solve equations (2) and (4) of
the Petz recovery map. Equation (3) requires a way to
rewrite the quantum channel adjoint as:

E†(•) = TrẼ [|0⟩E′ (U
E
E′X−→EY )

†(ΓEẼ⊗•)U
E
E′X−→EY |0⟩E′ ]

(14)
Where here ΓEẼ ≡ |Γ⟩ ⟨Γ|EẼ is an operator denoting
a maximally entangled state on E and reference system
Ẽ, and that system E’ is isomorphic to system E. Here,
|Γ⟩EẼ ≡

1
dE

∑dE

i |i⟩E |i⟩Ẽ .
Thus, applying the techniques described above, one

can then construct an expression for the isometric exten-
sion of the Petz recovery channel, given by;

V P
Y−→ẼX

≡ (|0⟩E′⊗IẼ⊗σ
1
2

X)(UE
E′X−→EY )

†(|Γ⟩EẼ⊗[E(σX)]−
1
2 )

(15)
Tracing over Ẽ in (15), recovers the Petz recovery channel
Pσ,E

y−→x. Here, the algorithm is centered on equation
(15), where each step of the algorithm performs a task
within a part of (15).

The algorithm consists of 4 different steps.

1. Construct the unitary U
˜f1(E(σX))

R′Y , which is a block

encoding of [E(σX)]−
1
2 though QVST

2. Prepare the normalized maximally entangled state
|Γ⟩EẼ /

√
dE . Then apply the unitary (UE

E′X−→EY )
†

to the prepared state. This is similar to the prob-
abilistic implementation of the quantum channel E
through U, but the measurement and post-selection
step is done later.

3. In this step, we first construct a block-encoding of

σX , by QVST, to U
˜f2(σX)

R′′X . Then apply the unitary

U
˜f2(σX)

R′′X to the output of step 2.
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4. Lastly, performing the measurement on the R”ER’
systems should provide a successful implementa-
tion of V P

Y−→ẼX
, up to a normalization. Tracing

over Ẽ in (15), recovers the Petz recovery channel
Pσ,E

y−→x

Thus, this paper provided an algorithm to construct
an approximate Petz recovery channel, up to some error.
More information regarding the algorithm such as its er-
ror bounds, complexity, and applications to pretty good
measurements, of which are out of the scope of this brief
review, should refer to the results from the paper.

CONCLUSION

In conclusion, this brief literature review provides a
conceptual understanding of the Petz recovery map and
summarises some advances in the field. The Petz recov-
ery map has been an important tool in various fields that
are quantum related and will continue to be a develop-
ing field. Although current developments have provided
more understanding, and have made its implementation
more useful, as seen with the algorithm above, it is still
far from complete.
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