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For an isolated system in classical statistical mechanics, the local Hamiltonian can be determined
from classical microstates in this system. Does statistical mechanics also work for isolated quantum
systems in the sense that we could have access to their full Hamiltonian through an quantum
mechanical analogy? Garrison and Grover proposed that the Eigenstate Thermalization Hypothesis
(ETH) implies that a single eigenstate encodes the full Hamiltonian in their paper. [1] To check
the validity of ETH, they introduced the notion of “equithermal” (Class I) and “non-equithermal”
(Class II) operators, and discussed why and when ETH is satisfied for each class.

INTRODUCTION

It’s known to us that the ground states of quantum
many-body systems contain information about their ex-
citations, since ground states of local Hamiltonian sat-
isfies the area law of entanglement entropy as discussed
in lecture. In this paper, we instead go from the ground
state to an excited eigenstate with a finite energy density
limV→∞E/V ̸= 0, to avoid the exception of eigenstates
with zero energy density that continue to satisfy the area
law, and consider the information encoded in this single
eigenstate.

Srednicki and Deutsch’s work on the study of a fi-
nite energy density state both lead to suggestion of the
“Eigenstate Thermalization Hypothesis” (ETH), which
demands that the thermalization occurs at the level of
each individual eigenstate.[2] [3] If ETH holds true,

⟨ψ|O|ψ⟩ = tr(Oe−βH)

tr(e−βH)
(0.1)

follows, which implies the precise equality between the
equal-time correlators of an operator O with respect to a
finite energy density eigenstate |ψ⟩ and those from a ther-
mal ensemble in the thermodynamic limit. We choose β
so that Eq(0.1) holds true when O equals to the Hamil-
tonian H, and thus we use |ψ⟩β for an eigenstate with

energy density corresponding to temperature β−1.
This paper gives conjecture and numerical evidence

that Eq(1) holds for the following cases. When the sub-
system A has volume VA/V → 0 as V → ∞, it holds
for all operators within A. In the more general case of a
subsystem A with 0 < VA/V < f∗ ∼ O(1), it holds for
all operators not explicitly involving energy conservation.
In particular for VA < V/2, it’s shown that it holds for a
large class of operator as well.

The case where Eq(0.1) is satisfied for all operators in
a subsystem A is equivalent to

ρA(|ψ⟩β) = ρA,th(β) (0.2)

where ρA,th(β) = trĀ(e−βH)
tr(e−βH)

, and ρA(|ψ⟩β) =

trĀ |ψ⟩β β ⟨ψ|. One implication of Eq(0.2) is that the

thermodynamical properties of a system at any tempera-
ture β−1 can be calculated using a single eigenstate. An
approximate form of ETH compared to Eq(0.2) is given
by

ρA(|ψ⟩β) ≈
e−βHA

trA(e−βHA)
(0.3)

Both Eq(0.2) and Eq(0.3) give the same results for all
bulk quantities and correlation functions of operators
with support only far from the boundary. The validity
of Eq(0.2) and Eq(0.3) is checked in this paper as well.

CONJECTURES AND NUMERICAL RESULTS

Basics of Statistical Mechanics

Start with an isolated system described by classical
statistical mechanics. Access to all classical microstates
CA in a small energy window is sufficient for us to deter-
mine the underlying local Hamiltonian.

P (CA) =
e−βE(CA)∑

{CA} e
−βE(CA)

(0.4)

Inverse of Eq(0.4) gives the Hamiltonian for subsystem
A, and any thermodynamic property at any temperature
can be calculated given E(CA).

How do we go from here to the isolated quantum sys-
tems? We will argue that the quantum mechanical ana-
log of Eq(0.4) is given by Eq(0.2),(0.3) through compar-
ing the operators and their canonical expectation values.
Based on the conjecture proposed in later sections, we
want to check precisely the extent to which the quantities,
von Neumann entropy(Class I) and Renyi entropy(Class
II) for example, match between a single eigenstate and
the canonical ensemble using evidence from the numeri-
cal results.
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Preparation

To discuss the conditions under which Eq(0.2), Eq(0.3)
is valid, the separation of operators in a given Hilbert
space into ”Equithermal operators” (Class I) and ”Non-
equithermal operators” (Class II) will be useful. When
the reduced density matrix takes the thermal form as
given in Eq(0.3), only the eigenstates of HA at an energy
density corresponding to the inverse temperature β con-
tribute to the expectation value of equithermal operators
as V → ∞. All the other operators without this property
goes into Class II. The extra significance of having ETH
to hold for Class II operator is that one is allowed to ac-
cess the properties of the Hamiltonian at a temperature
different than β−1.
Consider the relationship between Eq(0.1) and

Eq(0.2), Eq(0.3). Eq(0.1) can be rewritten as

trA(ρAO) =
trA(OtrĀ(e

−βH))

tr(e−βH)
(0.5)

If Eq(0.5) holds true for all operators in a subsystem A,
then we can show that the expansion of ρA(|ψ⟩β) and
ρA,th(β) in terms of complete set of operators in A are
equivalent element-by-element by choosing O properly,
which directly leads to Eq(0.2). This equality implies
that a single eigenstate gives us access to properties of
the Hamiltonian at any temperature.

ETH with VA ≪ V

In the case when VA ≪ V , ETH for Class I operators
corresponds to the traditional definition of ETH, where
all such operators match their values in the canonical
ensemble. Remarkably, this paper extends the validity of
ETH in this limit to all Class II operators.

The numerical results presented in this paper substan-
tiate the conjecture that ETH as given by Eq(0.1) is valid
for all Class I and Class II operators in the case VA ≪ V
as V → ∞. We also expect all the results to hold true
for the case where f ≡ VA/V → 0 as VA, V → ∞. It
follows that ETH as specified by Eq(0.2) also holds when
VA ≪ V . Thus a single eigenstate of finite energy den-
sity encodes information on properties of the system at
all temperatures.

Numerical results on the entanglement spectrum of
individual eigenstates and the corresponding Schmidt
states help with testing the validity of Eq(0.2) and
Eq(0.3). Comparing the four different quantities as spec-
ified in Fig 1 presents the agreements among ρA(|ψ⟩β),
ρA,th(β), the actual Hamiltonian HA and its expectation
value. It follows that the Schmidt eigenvalues and eigen-
vectors match with that of the thermal density matrix.
Directly calculating the overlaps between the eigenvec-
tors of the reduced density matrix ρA(|ψ⟩β) and that of

FIG. 1: Comparison of four quantities defined in the inset for
an LA = 4 subsystem at L = 21, β = 0.3 from [1].

FIG. 2: Direct calculation of overlaps between the Schmidt
eigenvectors and eigenvectors of the canonical density matrix, for

an LA = 5 subsystem at L = 21, β = 0.3.[1]

the thermal density matrix ρA,th(β) as in Fig 2 also leads
to agreement. Both results strongly support the validity
of Eq(0.2) and Eq(0.3).

To quantify the extent to which Eq(0.2) is valid, we
define the trace norm distance as

||ρA(|ψ⟩β)− ρA,th(β) ||1 ≡ 1

2
tr(

√
(ρA(|ψ⟩β)− ρA,th(β))2)

(0.6)
Based on the results in [4], the trace norm distance should
go to zero as 1/L if ETH holds for all operators in sub-
system A. The results in Fig 3 verify that the trace norm
distance is tending towards zero at least linearly with 1/L
as expected.
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FIG. 3: The mean and standard deviation of the trace norm
distance in the range 0.28 < β < 0.32 for L up to 21 and LA up

to 5.[1]

ETH with finite ratio VA/V

Now consider the validity of ETH for Class I operators
in the fixed-ratio limit where 0 < f < 1

2 is finite. Some
known results from the study of conformal field theories
(CFTs) indicates that Eq(0.1) might hold for operators in
Class I operators as long as VA < V/2 with VA, V → ∞.
One evidence comes from [5], where the closeness be-
tween the time dependent reduced density matrix ρA(t)
of a system evolved with a CFT Hamiltonian from a low
entanglement state and the thermal density matrix ρA,th

is exponentially close to unity for VA/2 < t < VĀ/2.
This evidence doesn’t apply to Class II operators since
the measure of closeness only received contribution from
eigenstates at temperature β−1 in the thermodynamic
limit according to its definition. Another evidence comes
from [6] [7] concerning comparison between the entangle-
ment entropy of pure eigenstates in large central charge
CFTs and the thermal entropy in the same limit.

However, the well-known counterexample of energy
variance operator leads to another restriction for ETH to
hold for Class I operators in the finite ratio case. Based
on the subsystem energy variance mismatch between the
reduced density matrix and canonical ensemble by a fac-
tor of (1 − f), we expect that all Class I operators not
related to energy conservation should satisfy ETH as in
Eq(0.1).

The top panel in Fig 4 shows the mismatch of energy
variance between a single eigenstate and the canonical
ensemble, and the bottom panel shows the agreement of
a different Class I operator JA between the two systems in
comparison. This numerical result strongly suggests that
all Class I operators not related to energy conservation
should satisfy ETH as in Eq(0.1) even with finite ratio
VA/V .

Moreover, given that the difference in subsystem en-

ergy variance occurs only in the finite ratio case, we can
calculate the lower bound on trace normal distance for a
modified bounded energy variance operator in the ther-
modynamic limit. As shown in Fig 5, the trace norm dis-
tance rapidly approaches its theoretical minimum bound,
potentially providing the result in thermodynamic limit.
Similarly, we do not expect ETH to hold for all Class

II operators when f is finite. In addition, there exists
a physical constraint in this limit on the energy density
range for the spectrum of |ψ⟩β to match that of ρA,th(β).
Start with considering an arbitrary Hamiltonian of hard-
core bosons with particle number conservation at infinite
temperature, we find out a necessary condition for the
wavefunction |ψ⟩β=0 to encode properties of the system
at all fillings. We carried on this derivation to systems
with (only) energy conservation, and obtained a neces-
sary condition for ETH to hold for all Class II operators.
The Schmidt decomposition of an eigenstate |ψ⟩β with
eigenvalue E is

|ψ⟩β =
∑
i

√
λi |ui⟩ ⊗ |vi⟩ (0.7)

Notice that ETH requires: |ui⟩’s are approximate
eigenstates of HA and Schmidt coefficients λi ∝
e−β⟨ui|HA|ui⟩ = e−βEA . For the requirements to be sat-
isfied, the constraint necessary for ETH to hold for all
Class II operators is

f ≤ f∗ ≡ min[
e

emax
, 1− e

emax
] (0.8)

in the case e > emax/2 where e = E/V .
From the numerical result as shown in Fig 6, we ob-

serve that significant deviation in the Schmidt eigenvalue
spectrum from their ETH prediction begins where this
constraint breaks down, i.e. beyond the critical energy
density e∗ = e/f .
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FIG. 4: Top panel gives the subsystem energy variance, and
bottom panel gives the variance of an operator
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inset gives the ratio between the two quantities.[1]

CFT: heavy states and local quenches,” Journal of High
Energy Physics 2015 (2015), no. 2 1–24. 3

[7] A. L. Fitzpatrick, J. Kaplan, and M. T. Walters,
“Virasoro conformal blocks and thermality from classical
background fields,” Journal of High Energy Physics 2015
(2015), no. 11 1–32. 3

FIG. 5: The mean and standard deviation of the trace norm
distance between the canonical density matrix and reduced

density matrix for fixed ratio LA/L and 0.28 < β < 0.32. The
horizontal lines are the theoretical minimum each trace norm

distance can take.[1]

FIG. 6: Comparison of the four quantities defined in the inset
of Fig 1 for eigenstates of an L = 21 system with LA = 7 at

β = 0.5. The inset plots the log of the density of states versus the
energy density for both a single eigenstate(blue curve) and the

canonical ensemble(cyan dot).[1]


