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To understand why we care about how the unitary transformation on a composite system can
be generated using local unitaries, we look up a basic result in quantum computing for 2-local
unitaries. After understanding using 2-local unitaries can generate universal unitaries of composite
systems, it’s natural to ask questions if using k-local unitaries can maintain the universality. In
particular, we ask if such universality remains valid in the presence of conservation laws and global
symmetries. Further question of all symmetric unitaries on a composite system can be generated
using local symmetric unitaries on the system as discussed in the main reference [1] using the tool

called ancillary qubits.

I. INTRODUCTION

For the first part, we will explain 2-bit gates are
universal for quantum computations with a specific
3-bit gates decomposition and algebraic formulation
of the problem.

For the second part, We want to understand how
the local symmetric conditions affect universal sym-
metric conditions. Or in other words, whether we
can always decompose universal gates into local
gates. Our main tool will be VkG the unitaries that
can be generated by k-local unitaries. If we can show
V& = V& where n is the system size, then it means
the universal symmetry can be generated locally.

II. SECTION 1

In this section, we will sketch the proof that all
necessary three-bits operations can be executed us-
ing 2-bits, i.e., the 3-local unitaries can be generated
by 2-local unitaries.

A. Background

To classify quantum computation, we need to
build the reversible classical network since all uni-
tary quantum operations are necessarily reversible,
therefore, reversible computing is a subset of quan-
tum computing. We learned from McGreevy[2] how
to build up a reversible XOR gate. To implement
AND reversibly, a three-bit gate is required in which
a1 and ag are passed through unchange, while the
third bit is XOR with the AND of the first two,
returning (a; - az) ® as. Since this three-bit gate
comprises both the XOR and the AND functions, it
can be considered to be the universal reversible com-
putation gate and it has come to be known as the
Toffoli gate T. Given this, Deutsch [3] generalized
the posited operation of a three-bit gate, from one

which performs transformations (in the reversible
case, it’s permutations) on the 8 = 23 possible states
of three bits, to one which performs unitary trans-
formations within the 23-dimentional complex vec-
tor space (Hilbert space ) spanned by the states of
3 bits, i.e.,

|a1aa27a3> = |a/17a/27ag>
This leads us to another way of specifying gates.

Consider an 8 x 8 matrix Sq with components

SqQ % = 5o 5;;[(1—a1.a2)5g§+m1-aze*%m(5§)a31
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is the "ath power of NOT".
B. Proof that Q can be realized by 2-bit gate
Relabel the basis to be "computational basis" la-

beled 0-7. If n is an integer, we can write out Sg‘“
and S‘é” such that all gates whose S are of the form
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To demonstrate the equivalence of one of Deutsch’s
3-bit gates with a sequence of 2-bit gates, for in-
finitesimal values of the rotation parameter 0, we
introduce
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The S matrix of these gates operating in the basis
of all three bits is a direct product, i.e., V@ @1,
and so is a block-diagonal 8 x 8 matrix. So we get
equality:

Us(A=6) ~ NaVis(¢ = V) Xas(p = —V9)
XV13(¢p = —v/6)Xa3(¢ = V6)No,

where N is simply the classical NOT. The figure
below demonstrates how it is decomposed.

C. Complete of the proof

The following result will show the above decom-
position may be obtained compactly within the lan-
guage of Lie algebra.

Lie algebra H is defined as infinitesimal generators
of Lie group by

U =1 +ieH

A key theorem of Lie-group theory is that, if H;
and Hs are generators of the group, then other gen-
erators may be obtained by commutation, producing
the Lie algebra :

H; = [H;,H,]

Moreover, one can write down an explicit expression

for how the unitary operation e**H3 is obtained from
i6H i6Hy

e and €72, i.e.,

et (i[H1H]) ei\/SHQ efi\/SHzefi\/ngei\/ng

which is valid for small parameter §. Thus we see
that the sequence of gates in illustrated in the figure
above is nothing more than the execution of a com-
mutator of the Lie algebra. Further computational
details are discussed in DiVincenzo[4].
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III. SECTION 2

In this section, we explain the interplay between
the symmetric Hermitian operator H(t) and sym-
metric unitary evolution V(t) in Iman Marvian [1].

A. Setup

An operator is called k-local if it acts non-trivially
on the Hilbert spaces of, at most, k sites. An op-
erator is called G-invariant, or symmetric, if sati-
fies U(g)AUT = A, for any group element g € G.
Each element g € G is represented by the unitary
U(g) = u(g)®". The set of unitaries that are sym-
metric under this G representation itself forms a
group, denoted by

V=V :VVIi=1[V,U(g)]=0,Vge G, (3.1)

We define V,? to be the set of all unitary transforma-
tions that can be implemented with k-local unitaries.
More formally, V,? = H:'Zl Vi, generated by compos-
ing symmetric k-local unitaries V;: i =1,...,m for a
finite m.

A generic local Hamiltonian H(t) has a decomposi-
tion as H(t) = >, h;(t), where each term h;(2) is k-
local for a fixed k. The unitary evolution generated
by this Hamiltonian is determined by the Shrédinger
equation

dv(t)

S = —HOVE) = =i [ koI VE) (62)

with the initial condition V' (0) = I

B. Converse statement

We want to prove for all £ > 0, any unitary in V,f
can be generated using a G-invariant Hamiltonian
H(t) that can be written as the sum of k-local terms.

The group generated by k-local symmetric uni-
taries is given by

VE=(V:VVI=1,[V,U(9)]=0,Yg€qG),

The real Lie algebra generated by the k-local, skew-
Hermitian, G-invariant operators is given by

b= algg{A : k—local, A+ AT = 0,[A,U(g)] = 0: Vg € G},

Note that for any k-local symmetric Hamiltonian h,
the family of unitaries generated by h i.e., {e”"* :
t € R} are all k-local and symmetric, i.e.

iHeby = Vi:e O ¢ VE



Conversely, any k-local symmetric unitary V can be
obtained by applying a k-local symmetric Hamilto-
nian on the system for a finite time i.e.

Vie O e Y& — iH e by,

Further, we are given the fact that V,? is a compact
connected Lie group and the exponential map from
the Lie algebra to the Lie group is subjective i.e.

V;? = ef*

Therefore, we confirm that by characterizing the lie
algebra h we also find a full and direct characteri-
zation of V,CG

Given the fact b is in the real algebra generated
by skew-Hermitian operators {A;}; such that it is
in the form

iH = ZaJAJ + Z ﬁjl;jz [AJMAJQ} + .
J

J1,J2

Combining the above parts, we can prove V,? =
e = (1) where H(t) is G-invariant that can be
written as the sum of k-local terms.

C. Proposition 3

Now we want to prove for all time t > 0, the
unitary evolution V(t) generated by Hamiltonian
H(t) according to the Shrddinger equation belongs
to the Lie group VE , i.e., can be implemented by
a quantum circuit with a finite number of k-local
G-invariant gates.

Proof. Supposed H(t) = >_; h;(t) is G-invariant,
this doesn’t imply that the k-local terms {h;(¢)} are
also G-invarinat. However, we can easily show that
H(t) can be written as sum of k-local G-invariant

terms, i.e., H(t) =}, hj, where each h; is both k-
local and G-invariant. Thus, we can make use of the
uniforma Haar distribution over group compact Lie
group G,we define

Ry = / dgU ()h; (U (g)1

It can be seen that h~j becomes G-invariant. Note
that the operator U(g)h;(t)U(g)! acts trivially on
all systems except on the k-systems, where h;(t) acts
non-trivially. It follows that h;(t) is also k-local. Fi-
nally, the assumption that H(t) = >, h;(t) is G-
invariant implies H(t) = 3_; h;(t). Since all opera-
tors {h;(t) : t > 0}; are k-local and G-invariant, the
Lie algebra generated by operators {ﬁj (t):t>0};is
a sub-algebra of b, the Lie algebra associated to Lie
group V,? . Together with a standard result of quan-
tum control theory [5], this implies that the family
of unitaries V(¢ = 0) = I belongs to V' for all t > 0.

IV. CONCLUSION

This result means that to characterize the group
V,? generated by k-local symmetric unitaries, it suf-
fices to characterize the Lie algebra generated by
k-local symmetric Hermitian operators. In partic-
ular the dimension of this Lie algebra, as a vector
space over R, is equal to dim(V{), the dimension of
the manifold associated to V,? , which is also equal
to the number of real parameters needed to specify a
general element of V,f . Using this relation, the main
result in the paper is to establish an upper bound
on dim(V{).
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