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Like in classical computation circuits, errors can occur in different stages of a quantum circuit and
they can easily propagated. Therefore, a fault-tolerant circuit design must be introduced to contain
the quantum error propagation. In this paper, we provide an overview based on Gottesman’s paper
[1] to various fault-tolerant quantum circuit gadgets and how they can possibly be used together to
reduce the overall error rate of a quantum circuit.

I. INTRODUCTION

Error correction has been a popular area in classical
information theory since 1940s. Hamming code [2], for
example, is a well developed error correction system that
has been widely used in computer memory. On the other
hand, as quantum information theory and quantum com-
puting develops, many also started to look at the error
correction methods that can be potentially beneficial to
quantum computations. Notable results include the nine-
qubit code [3], stabilizer codes [1], quantum CSS codes
(which is a special type of stabilizer code constructed
from classical codes) [4] [5], etc.

A. Error in Quantum Circuits

Like the circuit components used in a classical com-
puter, to process information in a quantum computer,
we need to introduce some basic components in a quan-
tum circuit [1]:

1. Preparation. Operations to prepare a (new)
qubit in some standard state.

2. Quantum Gates. The gatesH, CNOT, Rπ/8 con-
sist a sufficient group for quantum operations [6].

3. Measurement. Decoherent action to measure in-
dividual qubits in some standard basis (for exam-
ple, {|0⟩ , |1⟩}).

4. Wait. Necessary time of inaction on qubits in or-
der to synchronize the operation of gates [1].

Errors can occur at any location spatially and tem-
porally. If we’re considering a single gate on a single
qubit, the error might be easily containable using simple
quantum error correction methods. But what makes the
problem much more complicated is the error propaga-
tion. One error can be easily propagated both spatially
(from one qubit to many qubits) and temporally (accu-
mulative from one quantum operation to all consecutive
operations). Therefore, we must make a design that er-
ror propagation can get controlled throughout the entire
quantum circuit [1].

II. FAULT-TOLERANT QUANTUM CIRCUITS

A circuit with such design is called a fault-tolerant cir-
cuit. It does not completely remove or correct the errors
but if given the error rate is not too high, it can con-
tain the error propagation and makes us able to correct
the resulting errors (with some existing quantum error
correction techniques).
In Gottesman’s paper [1], each of such construction is

called a gadget, which simulate the behavior of the corre-
sponding non-fault-tolerant action but instead acting on
physical qubits, it acts on the logical qubits encoded in
a quantum EC (error-correcting) code.

A. Basic Properties

There for two basic properties for a fault-tolerant gad-
get (when there are not too many errors in the input
state and during the course):

1. Errors should be contained in the output state.

2. The gadget should perform the correct logical op-
eration on the encoded state.

Detailed definitions are given in Gottesman’s paper [1].
One construction that satisfies these properties is called
transversal gates. The basic idea of transversal gates
is to spread out any increase in errors among multiple
blocks of the code, so that each block can have a con-
trollable amount of errors. In particular, a gate that is
constructed as a tensor product is a transversal gate. For
example, CNOT⊗7 acting on any CSS code implements
the logical operation CNOT [7]. In fact, the entire logical
Clifford group can be implemented transversally [1]. But
the Clifford group is not sufficient for a universal quan-
tum computation, and, on the other hand, no code would
allows a universal set of transversal gates [8].

B. Error Correction and Measurements

1. Shor Error Correction

Shor error correction is a method to make error correc-
tions in the quantum circuits fault-tolerant [7]. In short,



2

we need to create many cat states via some non-fault-
tolerant procedure and then verify pairs of qubits to see
if they are the same. Each cat state can be used to mea-
sure one bit of the error syndrome and we would be able
to measure the full error syndrome a couple of times.
Then, from here, we can deduce a consensus error syn-
drome from the multiple times we measured and correct
that error. This procedure can actually work for any sta-
bilizer code [1]. However, it can be easily seen that Shor
error correction is not sufficient as it requires to create
many cat states (which means many extra gates) and a
very low error rate since if it’s high we can not find a
consensus syndrome nor correct the final error.

FIG. 1. A component of a fault-tolerant implementation of
Shor error correction [1].

2. Steane Error Correction

Steane error correction is an improved method in effi-
ciency but trades off the compatibility on non-CSS codes
(that is, it only works on CSS codes) [1]. Recall the
transversal CNOT appliess the logical CNOT on any CSS
code. Then the procedure of Steane error correction goes
as follows [1]:

• First we need to create an ancilla block |0̄⟩+ |1̄⟩ in
a codeword of the CSS code, and do a transversal
CNOT from the data block to the ancilla block. In
this way, it propagates the bit flip errors from the
data block to the ancilla block without changing
the encoded data. Then we can measure all the
qubits in the ancilla block and treat the result as a
classical codeword for C1. In this way, we deduce
the location of errors and correct them in the data
block.

• A similar procedure follows for correcting phase er-
rors: we create an ancilla block in the state |0̄⟩ and
perform a transversal CNOT with the ancilla block
as a control and the data block as a target. In this
way, the phas errors are copied to the ancilla block,
and we can measure them in the Hadamard-rotated

basis, treating the measurement output as a clas-
sical codeword for C2 with some errors. Then we
can deduce the location of the phase errors using
the classical decoding procedure for C2 and correct
them in the data block.

FIG. 2. A component that implements Steane Error Correc-
tion. [1].

3. Knill Error Correction

Knill error correction is another fault-tolerant error
correction that works for any stabilizer code [9]. Sim-
ilarly as Steane error correction, it also uses an ancilla
state that is encoded using the same code as the data
block. The basic idea is to use quantum teleportation to
move the encoded state into different blocks of the code.
The bell measurement would gain more information than
needed for teleporation, and the extra information can be
used to tell the error syndrome of the combined errors [9].
It can also be easily modified to a fault-tolerant measure-
ment gadget by substituting an ancilla in the state |0̄⟩ for
the encoded EPR pair in the error correction circuit [1].

FIG. 3. A component that implements Knill Error Correction.
[1].

Both Steane and Knill error corrections rely on moving
the error correction step into the creation of a particular
ancilla state. Advantages of doing so include not work-
ing directly on the data can reduce the time of waiting
and eventually reduce the amount of errors accumulated
during the wait time, and the ability to verify the ancilla
states since they are created in known states [10].

C. Gates

As mentioned in Section IIA, the Clifford group, which
can be made fault-tolerant via transversal gates, does not
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form a universal set of fault-tolerant gates [1]. We define
a set

Ck = {U | UQU† ∈ Ck−1 for all Q ∈ C1} (1)

where C1 is the Pauli group Pn and C2 is the Clifford
group C1. Then using the idea in Figure 4, with a tele-
poration construction and appropriate ancilla states, we
would be able to perform a gate from Ck once we know
how to perform gate from Ck−1 [1].

FIG. 4. A teleportation construction that shows how to per-
form UQU† given we know hot o perform U [1].

In fact, for the 7-qubit code and some similar CSS
codes, the Clifford group plus Rπ/8 ∈ C3 already form
a universal set of fault-tolerant gates. Any other gate
can actually be approximated with gates from Ck as ar-
bitraily close as we wish following a consequence of the
Solovay-Kitaev theorem [11].

D. State Preparation

State preparation is the last one of the four compo-
nents of quantum circuit we mentioned in Section IA

that need to make fault-tolerant. Most of the methods
mentioned in Section II B rely on the ability to fault-
tolerantly prepare some ancilla states [1]. For example,
to perform Steane or Knill error correction, we need to
prepare the ancilla states |0̄⟩ and/or |0̄⟩ + |1̄⟩ without
many errors. One way to do this is through a version of
Shor error correction. In short, we use the Steane error
correction procedure to detect errors instead of correcting
them. if errors are detected, we discard the main state
and measured the ancilla state. By repeating this proce-
dure using the ancilla states that passed previous rounds
of screening, with a sufficient number of iterations, this
is effectively a fault-tolerant state preparation procedure,
even for large distance codes [1].

E. Error Rate

All of the fault tolerance designs above serve for a com-
mon goal: to reduce the error rate for quantum circuits.
In fact, it can be shown that for any local stochastic
model less than a threshold error rate pT , there exists a
compatible fault-tolerant circuit [1]. For example, for the
7-qubit code, one find pT ≥ 2.73×10−5 [12] [13]. With el-
evated ancilla preparation techniques, Knill was able to,
through simulation, achieve a threshold pT of as high as
5% [9]. The threshold can be further improved in various
ways including introducing systematic error (for exam-
ple, a Rθ phase rotation over a consistent small angle),
devising gadgets which only involve nearest-neighbor in-
teractions, and utilizing asymmetry between X and Z
errors [1].
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