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This paper attempt to explore the computational potential of symmetry protected topological
phases in 1-D. Measurement based computation is used with tensor product representation of re-
source states. The work from Stephen et al. established a direct correlation between mathematical
modeling of SPT phases and the quantum computation power of resource state within them(in the
1-D case).

INTRODUCTION

Measurement-bases quantum computation has been
well studied for dimensional cases larger than 1. It had
been shown that to simulate a quantum circuit in D
dimension with MBQC, we need an entangled resource
state in D + 1 dimension, hence the 1-D resource states
had been overlooked while using MBQC scheme.

Symmetry-protected topological(SPT) in 1-D

For (finite)gapped systems, two ground states are said
to be of same phase protected by symmetry S if they
can be deformed into each other without breaking the
symmetry and closing the ground state energy gap. An
example of SPT order that we will be focusing on is the
1-D AKLT state shown in lecture. The state is protected
by Z2 × Z2 symmetry(π-rotation about x,y,z axes).

Measurement-based quantum computation(MBQC)

MBQC is a method that simulates a quantum circuit
by performing local measurement on single qbits on a en-
tangled state. Computation with such method consumes
entanglement(by measurements) to allow simulation of
unitary evolution. The backbone of the computational
method is the resource state prepared for measurement
operations. One classic example of such state is the 2-D
cluster state to which we can mold many unitary gates
onto the ”substrate” with measurement patterns[1]. The
2-D cluster state has the ability to simulate every 1-D
quantum circuits, meaning it’s a resource state for uni-
versal MBQC in 1-D.

MBQC ON 1-D AKLT STATE

Setup

For description of 1-D AKLT state from spin chains,
we will sue the Matrix Product State(MPS) formalism
introduced on page 120-121 of the lecture notes. A state

|ψ⟩ of a finite sized spin chain can be represented as fol-
lowing

|ψ⟩ =
∑

i1,...,iN

⟨R|AiNAiN−1 . . . Ai1 |L⟩ |i1 . . . iN ⟩ (0.1)

Here, |L⟩ and |R⟩ vectors encode the boundary conditions
of the chain, indexN labels each site with local dimension
d(same for each site), and A is the tensor at site N with
rank 3(2×2×3, projection from spin 1/2 pair to spin 1).

FIG. 1: graph representation of the tensor product state with
rank-3 tensor A on each site

From Measurement to Unitary Operation

FIG. 2: Note that the subsystem connected to tensor A(dotted
lines) but not protected by the on-site Z2 × Z2 symmetry is

considered ”junk” subspace

When we perform a measurement on one site with a set
of orthogonal basis, the projection operation reduces the
on-site tensor to rank-2, which could be seen as operators
in correlation space. The exact operator imposed onto
the link states depend on the measurement out come,
hence it’s not deterministic but rather probabilistic.
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One important mechanism is the propagation of such
product of measurement along the chain in correlations
space. A tensor appearing the the MPS representation
of ground states in the symmetry-protected phase satis-
fies the condition shown in figure 2. Using this trans-
formation we can show that the operator resulted from
measurement on previous site can be propagated through
the next site with transformation u(g) at ’base.’ On a
different perspective, such change can be absorbed my
measurement on subsequent sites with transformed ba-
sis(that within the symmetry group).

The point is that the operations that is propagating
in the correlation space, connecting the two edge states,
is determined by the the set of basis and results of each
site measurement in the bulk. Practically, measurement
outcome at each site determines the basis of measurement
on the following site. As such, the operator generated
from the left-most site measurement could propagate to
the right-most site ’unharmed’ and act on the edge state.

You can find a more rigorous description and proofs of
the above manipulations to the tensor product represen-
tations in Else’s work[2].

Example

For the AKLT model, the projector on each spin-1 site
is

|0⟩ σz√
2
+ |−1⟩σ+ + |1⟩ (−σ−)

the operators resulting from measurement will simply be
the three matrices { σz√

2
, σ+,−σ−} listed above, if we mea-

sure in the basis of {|x⟩ , |y⟩ , |z⟩} = {|+1⟩ , |−1⟩ , |0⟩}.
If we had changed the measurement basis to {(|−1⟩ −

|+1⟩)/
√
2, i(|−1⟩+|+1⟩)/

√
2, |0⟩}, the resulting operators

in the correlation space is simply the set of XYZ Pauli
operators. If we measure each site from the left, the
accumulated operation on the right edge state will be the
sequence of Pauli operators according to the sequence of
measurement outcomes. Such basis of measurement is
called the wire basis.

It’s now easier to develop a measurement basis that
produce more general unitary operations on the corre-
lation space. A rotation in our measurement basis(wire
basis) about the |z⟩ axis produced the following basis

{cosϕ |x⟩+ sinϕ |y⟩ , cosϕ |y⟩ − sinϕ |x⟩ , |z⟩}

per symmetry shown in figure 2, the set of resulting set
of operators(somewhat intuitively) are

{σxeiϕσz , σye
iϕσz , σz1}

The operation could be regard as set of unitary rotations
{eiϕσz , eiϕσz ,1} and a set of by-products {σx, σy, σz}. If

we only want to impose unitary rotations on the edge
state, we’ll need to propagate the byproducts produced
at each site by transforming the basis of measurement at
subsequent sites. This also implies temporal order in the
measurements.

However, the randomness of the measurement out-
comes means if we carry out the measurements described
in the example above, the resulting state after byprod-
uct propagation and absorption will behave like a ’mixed
state’ rather than unitary rotation from the original.
However, if we choose to rotate only by and infinitesimal
angle dϕ, the resulting ’mixed’ state is then approximated
by[3]

ρ = e−ipdϕσz |Ψ⟩ ⟨Ψ| eipdϕσz +O(dθ2) (0.2)

Where the modifying term p is determined by the success
rate of our unitary rotation(with equal probable outcome
in our example p = 2/3). This means for finite angle ro-
tation to work, we have to cascade those infinitesimal ro-
tations one after another while propagating byproducts
from all of the sites. With some tweak to the measure-
ment basis in the example, we can also rotate about the
x axis. This effectively give us construction for all op-
erations with the group SU(2). The cost of performing
logical operations in the correlation space is the amount
of site that needs to be measured(the amount of entan-
glement being consumed) that is inversely proportional
to the success rate p.

SYMMETRY IS THE ENABLER

The mechanism of generating unitary operators relies
on the on-site symmetry G(Z2×Z2 in the case of AKLT)
and cohomology class [ω] ∈ H2(G,U(1)) that describes
how the on-site symmetry transform to the correlation
space. Here’s the theorem proposed by Stephen et al.[3]

Consider an SPT phase defined by an on-site sym-
metry groupG and cohomology class [ω]. Suppose
there exists a finite abelian subgroup H ⊂ G such
that [ω|H ] is maximally non-commutative, and let

pn be a prime power dividing
√
|H|. Then the lie

group that uniformly defines the computational
power of each resource state has L[O] ⊃ SU (pn).

The theorem, which is proven in [3], implies a lower
bound on the compuational power of resources state that
has phase protected by G and shows the usefulness of
such 1-D SPT phases in the scheme of MBQC.
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