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1. The vacuum is a fluid with p = −ρ.

We said in lecture that the vacuum energy density ρ gravitates and that, when

positive, its effect is to cause space to inflate – to expand exponentially in time.

An important aspect of this phenomenon is that the vacuum fluctuations produce

not only an energy density, but a pressure, p = T ii (no sum on i), of the form

p = −ρ, which is negative for ρ > 0. The vacuum therefore acts as a perfect fluid

with p = −ρ. (The stress tensor for a perfect fluid in terms of its velocity field

uµ takes the form T µν = (p + ρ)uµuν + pgµν , so in a frame with uµ = (1,~0µ),

T 0
0 = ρ, T ii = p.) Solving Einstein’s equations with such a source produces an

inflating universe. In this problem we show that this is the case from QFT.

(a) Show that the energy-momentum tensor for a free relativistic scalar field

(S[φ] =
∫
dDx
√
gL,L = 1

2
gµν∂µφ∂νφ− m2

2
φ2) takes the form

Tµν = a∂µφ∂νφ− bgµνL

with some constants a, b.

You may do this either by deriving the Noether currents for spacetime trans-

lations, or by extracting the response to a variation of the spacetime metric,

Tµν(x) = 2√
g

δS
δgµν(x)

. Here and above
√
g ≡

√
| det g|.

(b) Reproduce the formal expression for the vacuum energy

〈0|H|0〉 = V

∫
d̄dk

1

2
~ω~k

using the two point function

〈0|φ(x)2 |0〉 = 〈0|φ(0)φ(0)|0〉 = lim
~x,t→0

〈0|φ(x)φ(0) |0〉

and its derivatives. (V is the volume of space.)

Some details of this calculation appear in Zee’s book, section I.8, around

equation (19). Or see below.

1

http://uclibs.org/PID/174231


(c) Show that the vacuum expectation value of the pressure

〈0|Tii|0〉

(no sum on i) gives the same answer, up to a sign.

[Hints: You’ll find a quite different looking integral from the vacuum en-

ergy. Use rotation invariance of the vacuum to simplify the answer. The

claim is that however you regulate the integral for the vacuum pressure and
1
2

∫
d̄dkωk, you’ll get the same answer (as long as the regulator respects the

symmetries). A convenient regulator is dimensional regularization: simply

treat the dimension d as an arbitrary complex number.]

(d) Argue that p = −ρ is required in order that the vacuum energy does not

specify a preferred rest frame.

(e) Evaluate the vacuum energy using the Feynman rules. That is, draw this

amplitude as a Feynman diagram which is a circle – a line connecting a

point to itself – with an operator insertion at the point.

(f) [bonus problem] Show that the resulting vacuum energy momentum tensor

(T00 = ρ, Tii = −ρ (no sum on i)) is the same as the contribution to the

energy-momentum tensor from an action of the form

Scc =

∫
dDx
√
gΛ

where Λ is a constant (the cosmological constant).

If you wish, plug in the FRW ansatz for the metric ds2 = −dt2 + a(t)2d~x2

and show that Einstein’s equations in the presence of a positive cosmological

constant

δS[g]

δgµν(x)
= 0, with S[g] =

1

16πGN

∫
dDx
√
gR + Scc (1)

have the solution a(t) = eHt for some H determined by Λ and GN .

I didn’t answer the questions quite in order, but they are all here:

T µν = ∂µφ∂νφ− δµνL.

T00 = φ̇2 − L = h =
1

2

(
π2 + (~∇φ)2 +m2φ2

)
.

Tii = (∂iφ)2 +
1

2

(
−π2 + (~∇φ)2 +m2φ2)

)
(no sum on i).
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We use the fact that the vacuum is translation invariant to identify∫
ddx 〈0|T µν (x) |0〉 = Ld 〈0|T µν (0) |0〉

where Ld is the volume of space. The following consequences of the mode expan-

sion of the scalar field will be useful:∫
ddxm2φ2 =

∫
x

∫
k

∫
q

m2√
4ωkωq

(
ake

i~k·~x + a†ke
−i~k·~x

) (
aqe

i~q·~x + a†qe
−i~q·~x) (2)

=

∫
d̄dk

m2

2ωk

(
aka

†
k + a†kak + (aka−k + h.c.)

)
. (3)

∫
ddxπ2 = (−i)2

∫
x

∫
k

∫
q

√
ωkωq

4

(
ake

i~k·~x − a†ke
−i~k·~x

) (
aqe

i~q·~x − a†qe−i~q·~x
)

(4)

=

∫
d̄dk

ωk
2

(
aka

†
k + a†kak − (aka−k + h.c.)

)
. (5)

∫
ddx(~∇φ)2 =

∫
x

∫
k

∫
q

√
1

4ωkωq

(
ikake

i~k·~x − ika†ke
−i~k·~x

) (
iqaqe

i~q·~x − iqa†qe
−i~q·~x)

(6)

=

∫
d̄dk

k2

2ωk

(
aka

†
k + a†kak + (aka−k + h.c.)

)
. (7)

When taking vacuum expectation values of these objects, only the first term

survives:

〈0| (aka
†
k + a†kak) |0〉 = 〈0| (2a†kak + 1) |0〉 = 1.

Therefore the energy density is

〈0|T00 |0〉 =
1

2

∫
d̄dkωk

and the pressure is

〈0|Tii |0〉 =
1

2

∫
d̄dk

k2i
ωk

(no sum on i).

The expression we find for the vacuum pressure looks quite different from the

vacuum energy. But there are a few observations about symmetry that help to

bring out their commonalities:
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(a) By Lorentz invariance of the vacuum, the vacuum expectation value of the

stress tensor can only have the form

〈0|Tµν |0〉 = Ληµν

because the Minkowski metric is the only Lorentz invariant 2-index object

available. This has the form of the stress tensor of a perfect with p = −ρ.

(Some interesting properties of a fluid of this form are described here.) Since

it’s Lorentz invariant, with this form of the pressure, the vacuum energy does

not specify a preferred frame.

(b) The vacuum is also isotropic, meaning that 〈0|Tii |0〉 (no sum) must be

independent of i. We can use this to write the pressure in a more symmetric-

looking form. Since it’s equal to its average over i = 1..d, we can replace

k2i  ~k2/d in the integrand:

〈0|Tii |0〉 =
1

2

1

d

∫
ddk

~k2

ωk
(no sum on i).

Thus we find

〈0|T00 |0〉 =
1

2

∫
ddkωk ≡ ρ (8)

〈0|Tii |0〉 =
1

2

1

d

∫
ddk

~k2

ωk
≡ p (no sum on i). (9)

The resulting (divergent) integrals aren’t obviously the same. The claim, based

on Lorentz symmetry, is that if they are regularized in a Lorentz-invariant way

they will always give the same answer.

Here is an example of a very symmetrical way to regularize them, where we can

see their equality explicitly: simply interpret d as an arbitrary complex number.

(This is called dimensional regularization.)

ρ =

∫
d̄dk

√
~k2 + ω2 =

Ωd

(2π)d︸ ︷︷ ︸
≡Kd

∫ ∞
0

dkkd−1
√
k2 +m2 = −1

2
Kdm

d+1

∫ 1

0

dxxa(1−x)b

with a = −d+3
2
, b = d−2

2
. In the last equality we made the change of variables

x ≡ m2

k2+m2 (so k =
√

1−x
x
, dk = −1

2
dx

x3/2(1−x)1/2 ,
√
k2 +m2 = m√

x
). Now using the

identity ∫ 1

0

dxxa(1− x)b =
Γ(1 + a)Γ(1 + b)

Γ(2 + a+ b)
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where Γ(x) is the Euler Gamma function (and this combination is related to the

Euler Beta function), we have

ρ = −1

2
Kdm

d+1Γ(1 + a)Γ(1 + b)

Γ(2 + a+ b)
.

On the other hand, using rotation invariance,

p =
1

d

∫
d̄dk

k2√
~k2 + ω2

=
1

d

Ωd

(2π)d︸ ︷︷ ︸
≡Kd

∫ ∞
0

dk
kd+1

√
k2 +m2

= −1

2
Kdm

d+1

∫ 1

0

dxxa(1−x)b+1.

But the Gamma function satisfies the (factorial) identity Γ(1 + x) = xΓ(x), and

therefore we have

p = ρ
1

d

1 + b

2 + a+ b
= −ρ.

It may be tempting to instead use a hard cutoff on the spatial momentum, but

this isn’t Lorentz invariant! (In a different rest frame, such a cutoff will look

different.) So it breaks the relation we are trying to show.

2. Casimir force is regulator-independent. [Bonus problem] Suppose we use a

different regulator for the sum in the vacuum energy
∑

j ~ωj. The regulator we’ll

use here is an analog of Pauli-Villars. In the notation introduced in the lecture

notes, we replace

f(d) 
1

2

∞∑
j=1

ωjK(ωj)

where the function K is

K(ω) =
∑
α

cα
Λα

ω + Λα

.

We impose two conditions on the parameters cα,Λα:

• We want the low-frequency answer to be unmodified:

K(ω)
ω→0→ 1

– this requires
∑

α cα = 1.

• We want the sum over j to converge; this requires that K(ω) falls off faster

than ω−2. Taylor expanding in the limit ω � Λα, we have

K(ω)
ω→∞→ 1

ω

∑
α

cαΛα −
1

ω2

∑
α

cαΛ2
α + · · · .

So we also require
∑

α cαΛα = 0 and
∑

α cαΛ2
α = 0.
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First, verify the previous claims about K(ω).

Then compute f(d) and show that with these assumptions, the Casimir force is

independent of the parameters cα,Λα.

[A hint for doing the sum: use the identity

1

X
=

∫ ∞
0

dse−sX

inside the sum to make it a geometric series. To do the remaining integral over

s, Taylor expand the integrand in the regime of interest.]

This problem comes from Zee, QFT in a nutshell, 2d edition pages 74-75.

3. Casimir energy from balls and springs. [More difficult bonus problem]

Regularize the Casimir energy of a 1d scalar field by discretizing space. If you

suppose there are N ≡ d/a ∈ Z lattice points in the left cavity

| ← d→ | ←− L− d −→ |

what answer do you find for the force on the middle plate?

[Hint: you will find the wrong answer! The problem is that with these assump-

tions d cannot vary continuously. One way to allow d to vary continuously (and

get the right answer) is to impose φ(0) = 0 = φ(d), but do not assume d corre-

sponds to a lattice site.]

Using the set-up from lecture, the vacuum energy is E0(d) = f(d) + f(L − d)

with

f(d) =
1

2
~

N∑
j=1

ωj (10)

with

ωj = 2

√
κ

m
sin

jπ

N
=

2c

a
sin

jπ

N
, N ≡ d/a ∈ Z, j = 1..N (11)

where we used the relation between the wave speed and the spring constant. Note

that we are interested in N � 1 to approach something like a continuum. The

sum is (it is a sum of two geometric series, or ask Mathematica)

N∑
j=1

sin
jπ

N
= cot

π

2N
N�1
=

2N

π
− π

6N
+O(N−2).

Then

E0 = f(d) + f(L− d)
a�d
=

1

2

2c

a

(
2

π

d+ L− d
a

− π

6

(
a

d
+

a

L− d

)
+O(a2)

)
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As before the terms that have negative powers of a are independent of d and

therefore do not contribute to the force. The terms with more powers of a go to

zero in the limit d/a→∞. The only term that survives is the term independent

of the cutoff a, which produces an attractive force that goes like π
d2

. The only

problem is that the coefficient is 1/6 rather than 1/24!

This innocent-looking factor of four hides a deeper problem with the calculation I

just described: N must be an integer, but I’ve replaced it with d/a which we are

trying to vary continuously. It is actually possible to let d/a vary continuously,

at the cost of putting boundary conditions φ(x = 0) = 0 and φ(x = d) = 0 at

locations that are not on the grid. That is, let the lattice sites be xj = ja, but

don’t assume that d is an integer multiple of a. So φ(0) = 0 says φ(x) ∝ sin kx

for some k. φ(d) = 0 says kd ∈ πZ so k = πj/d, j = 1..N . But d need not be

Na! Like this (here r = 15, a = 1.1, and I’ve drawn the j = 3 mode):

(Notice that this is harder to do for periodic boundary conditions.)

Then ωk = 2c
a

sin ka
2

as before, with k = πj
d
, j = 1..N . Then

f(r) =
1

2

∑
j

ωj =
c

a

N∑
j=1

sin
πja

r
=

c

2a
csc
( π

2z

)(
sin

(
(z − 1)π

2z

)
− sin

(
(z − 1− 2N)π

2z

))
,

where N is the number of lattice sites and z ≡ r/a is the length of the interval

in units of the lattice spacing, which need not be an integer. So N = br/ac, the

floor of (largest integer less than) r/a. The total energy in left and right cavities

E0(d) = f(d) + f(L− d) then looks like this:
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where I’ve set c = 1, L = 1000, a = 1
4
, just as in Matt Schwartz’s plot in §15.2.

Using the following expansions for large intervals (large z = r/a):

csc
π

2z
=

2z

π
+

π

12z
+O(z−3)

sin

(
(z − 1)π

2z

)
= 1− π2

8z2
+O(z−4)

and, using bzc
z

= 1− x
z

where x ≡ z − bzc,

sin

(
(z − 1− 2N)π

2z

)
= sin

((
−π
2

)
(1 +

1− 2x

z
)

)
(12)

= −1 +
π2

8z2
(1− 2x)2 +O(z−4) (13)

average
 −1 +

π2

8z2
1

3
+O(z−4) . (14)

In the last step we averaged over the fluctuations of x, which become more and

more rapid as the lattice spacing shrinks. Putting these together, we get

f(r) =
c

2a

(
2z

π
+

π

12z
+ · · ·

)(
1− π2

8z2
+ · · · −

(
−1 +

π2

8z2
1

3
+ · · ·

))
(15)

=
r

πa2
− π

24r
+O(a/r)2 (16)

which is exactly the answer we got from other regulators.

Comparing to the wildly-oscillating plot above, the averaged result in (16) is the

orange curve here:

The yellow curve is what we get if we just set the (1− 2x)2 in (13) to zero.
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