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Physics 215B QFT Winter 2025
Assignment 2 —  Solutions

Due 11:59pm Tuesday, January 21, 2025

1. The vacuum is a fluid with p = —p.

We said in lecture that the vacuum energy density p gravitates and that, when
positive, its effect is to cause space to inflate — to expand exponentially in time.
An important aspect of this phenomenon is that the vacuum fluctuations produce
not only an energy density, but a pressure, p = T¢ (no sum on %), of the form
p = —p, which is negative for p > 0. The vacuum therefore acts as a perfect fluid
with p = —p. (The stress tensor for a perfect fluid in terms of its velocity field
u* takes the form T = (p + p)u*u” + pg"”, so in a frame with u# = (1,5"),
7Y = p, T/ = p.) Solving Einstein’s equations with such a source produces an
inflating universe. In this problem we show that this is the case from QFT.

(a) Show that the energy-momentum tensor for a free relativistic scalar field
(Sl¢] = [dPz/gL, L = 59" 0,¢0,¢ — m72¢2) takes the form

T;w = aau¢au¢ - bg,uuﬁ

with some constants a, b.

You may do this either by deriving the Noether currents for spacetime trans-

lations, or by extracting the response to a variation of the spacetime metric,

Tw(z) = \/lﬂgf—fm. Here and above /g = /| det g|.

(b) Reproduce the formal expression for the vacuum energy
1
(0|H|0) = V/ddkihw,;
using the two point function
(01 6()?[0) = (0]¢(0)¢(0)[0) = lim. (0] $()(0) |0)

and its derivatives. (V is the volume of space.)

Some details of this calculation appear in Zee’'s book, section 1.8, around
equation (19). Or see below.


http://uclibs.org/PID/174231

(c¢) Show that the vacuum expectation value of the pressure
(0[T340)

(no sum on 7) gives the same answer, up to a sign.

[Hints: You’ll find a quite different looking integral from the vacuum en-
ergy. Use rotation invariance of the vacuum to simplify the answer. The
claim is that however you regulate the integral for the vacuum pressure and
% i d%kwy,, you’ll get the same answer (as long as the regulator respects the
symmetries). A convenient regulator is dimensional reqularization: simply
treat the dimension d as an arbitrary complex number.|

(d) Argue that p = —p is required in order that the vacuum energy does not
specify a preferred rest frame.

(e) Evaluate the vacuum energy using the Feynman rules. That is, draw this
amplitude as a Feynman diagram which is a circle — a line connecting a
point to itself — with an operator insertion at the point.

(f) [bonus problem] Show that the resulting vacuum energy momentum tensor
(Too = p,Ti; = —p (no sum on 7)) is the same as the contribution to the
energy-momentum tensor from an action of the form

See = / dPx\/gA

where A is a constant (the cosmological constant).

If you wish, plug in the FRW ansatz for the metric ds? = —dt* + a(t)?dz?
and show that Einstein’s equations in the presence of a positive cosmological
constant

0.51g] 1

- ith — dP - 1
Som () 0, with S|g] 167TGN/ z\/gR+ S (1)

have the solution a(t) = et for some H determined by A and Gy.
I didn’t answer the questions quite in order, but they are all here:
T = 0"¢0,¢ — oL L.
T00=¢2—£:h:%<72+(6¢)2+m2¢2>-
Ty = (0;0)* + % (—7r2 + (Vo)* + m2¢2)> (no sum on 7).



We use the fact that the vacuum is translation invariant to identify

/ d (0 T () 0) = L (0] T2(0) |0)

where L? is the volume of space. The following consequences of the mode expan-
sion of the scalar field will be useful:

m? ik-@ —ik-& i@ —igE
/ddxm2¢2 = //k/\/ﬁ (akek +ale”* ) (a, 7" +ale™ ) (2)
T q q

m?
= /ddk:2—u)k <a,€a2 +aba, + (apa_y + h.c.)) . (3)
/ 2 = (i) /// [Wiwg ake’zf—ak Ef) (aqeitj’-f_azefiq’-f) (4)
= /ddk 5 (a,ca,C +ala, — (ara_j, + h.c. )) (5)

= 1 o - . o
[ o= [ ] s ) e
zJk Jq q
k2
= /dde_wk (akaz + a}iak + (aka_k + h.c.)) . (7)

When taking vacuum expectation values of these objects, only the first term
survives:

(01 (ayaf + afa,) [0) = (0] (2aja;, +1)]0) = L.

Therefore the energy density is
| TOO |0 / dd k:wk
and the pressure is
(0| T3 |0) = /ddk— (no sum on 7).
The expression we find for the vacuum pressure looks quite different from the

vacuum energy. But there are a few observations about symmetry that help to
bring out their commonalities:



(a) By Lorentz invariance of the vacuum, the vacuum expectation value of the
stress tensor can only have the form

(01 T [0) = A

because the Minkowski metric is the only Lorentz invariant 2-index object
available. This has the form of the stress tensor of a perfect with p = —p.
(Some interesting properties of a fluid of this form are described here.) Since
it’s Lorentz invariant, with this form of the pressure, the vacuum energy does
not specify a preferred frame.

(b) The vacuum is also isotropic, meaning that (0|7} |0) (no sum) must be
independent of 7. We can use this to write the pressure in a more symmetric-
looking form. Since it’s equal to its average over ¢ = 1..d, we can replace
k2 ~ k2 /d in the integrand:

11 k2
(0| T |0) = /ddk— (no sum on 7).

2d
Thus we find
01T [0) = 5 [ 't = Q
(0| T 10) = ;;/ddlﬂi—z =p (no sum on 7). (9)

The resulting (divergent) integrals aren’t obviously the same. The claim, based
on Lorentz symmetry, is that if they are regularized in a Lorentz-invariant way
they will always give the same answer.

Here is an example of a very symmetrical way to regularize them, where we can
see their equality explicitly: simply interpret d as an arbitrary complex number.
(This is called dimensional regularization.)

[ Q[ 1 !
p= /ddk: k? +w? = @ d)d / dkk¥ k2 +m? = —inde/ drz®(1—z)°
T)" Jo 0
——

EKd

d+3 b= %. In the last equality we made the change of variables

T = k2+ 5 sok— 2t dk = — 2363/2(1 x1/z»\/k +m? = \/—5) Now using the

identity
I'l+a)l'(1+0b
/d$:13 (1_1,)1)_ (F(2+) ( )
0 a+b)

with ¢ =



https://ned.ipac.caltech.edu/level5/Sept04/Peebles/Peebles2_2.html

where ['(x) is the Euler Gamma function (and this combination is related to the
Euler Beta function), we have
1 a1 L1 +a)l(1+40)

= -K
S { CEay

On the other hand, using rotation invariance,

— l/ddk;k—Q 1 /Oo dkﬂ - _lK mdtt /1 dza®(1—z)"
"7 Viz 42 d2m)? ) Vk? +m? 2 0 ’

EKd

But the Gamma function satisfies the (factorial) identity I'(1 + x) = 2I'(x), and

therefore we have
1 1456

P Paa b P

It may be tempting to instead use a hard cutoff on the spatial momentum, but
this isn’t Lorentz invariant! (In a different rest frame, such a cutoff will look
different.) So it breaks the relation we are trying to show.

. Casimir force is regulator-independent. [Bonus problem]| Suppose we use a
different regulator for the sum in the vacuum energy » ; Twj. The regulator we’ll
use here is an analog of Pauli-Villars. In the notation introduced in the lecture
notes, we replace

f(d) ~ %Z%’K(%‘)

where the function K is A

K(W) = za:cam.

We impose two conditions on the parameters ¢, Ay:
e We want the low-frequency answer to be unmodified:
K(w)“3"1
— this requires ) ¢, = 1.

e We want the sum over j to converge; this requires that K (w) falls off faster
than w2, Taylor expanding in the limit w > A,, we have

K(w) = ZZCQAQ—EZCQAQ—F---.
So we also require > c,Ay =0 and Y coAZ = 0.

5



First, verify the previous claims about K (w).

Then compute f(d) and show that with these assumptions, the Casimir force is
independent of the parameters ¢, Aq,.

[A hint for doing the sum: use the identity

1 oo
X:/o dse X

inside the sum to make it a geometric series. To do the remaining integral over
s, Taylor expand the integrand in the regime of interest.]

This problem comes from Zee, QFT in a nutshell, 2d edition pages 74-75.
. Casimir energy from balls and springs. [More difficult bonus problem]

Regularize the Casimir energy of a 1d scalar field by discretizing space. If you
suppose there are N = d/a € Z lattice points in the left cavity

| —d—|+— L—-d — |

what answer do you find for the force on the middle plate?

[Hint: you will find the wrong answer! The problem is that with these assump-
tions d cannot vary continuously. One way to allow d to vary continuously (and
get the right answer) is to impose ¢(0) = 0 = ¢(d), but do not assume d corre-
sponds to a lattice site.]

Using the set-up from lecture, the vacuum energy is Eo(d) = f(d) + f(L — d)
with
LN
f(d) = §hjzle (10)

with . .
wj=2y/—sin"—=—sin—, N=dfac€Z,j=1.N (11)
where we used the relation between the wave speed and the spring constant. Note

that we are interested in N > 1 to approach something like a continuum. The
sum is (it is a sum of two geometric series, or ask Mathematica)

N :
2N

Zsin‘% —cot— 2T Ty O(N72).

j=1

2N T 6N
Then
B a<d 12¢ (2d+L—d 7 (a a 9
Eo=f(d)+ f(L—d) = 5 (7r . 6<d+L_d)+(9(a))
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As before the terms that have negative powers of a are independent of d and
therefore do not contribute to the force. The terms with more powers of a go to
zero in the limit d/a — oco. The only term that survives is the term independent
of the cutoff a, which produces an attractive force that goes like 7. The only
problem is that the coefficient is 1/6 rather than 1/24!

This innocent-looking factor of four hides a deeper problem with the calculation I
just described: N must be an integer, but I've replaced it with d/a which we are
trying to vary continuously. It is actually possible to let d/a vary continuously,
at the cost of putting boundary conditions ¢(x = 0) = 0 and ¢(z = d) = 0 at
locations that are not on the grid. That is, let the lattice sites be x; = ja, but
don’t assume that d is an integer multiple of a. So ¢(0) = 0 says ¢(z)  sin kz
for some k. ¢(d) = 0 says kd € nZ so k = wj/d,j = 1..N. But d need not be
Na! Like this (here r = 15,a = 1.1, and I've drawn the j = 3 mode):

-05F

(Notice that this is harder to do for periodic boundary conditions.)

Then wy, = %sin% as before, with k = %j,j = 1..N. Then

N .
f(r) = %ij = 2 sin¥ = icse (2”_2> <Sin ((z ;zl)w> i ((z — 12—Z 21\%)) |
. p —

J

where N is the number of lattice sites and z = r/a is the length of the interval
in units of the lattice spacing, which need not be an integer. So N = |r/a], the
floor of (largest integer less than) r/a. The total energy in left and right cavities
Eo(d) = f(d) + f(L — d) then looks like this:

Ep(d)




where I've set ¢ = 1, L = 1000, a = 3, just as in Matt Schwartz’s plot in §15.2.

1
4

Using the following expansions for large intervals (large z = r/a):

T 2z T

m_ T -3
ese - = + 122 +0(z77)

S (z=D7\ w2 4

sin < 5 =1 o2 +0(z7%)

and, using % =1—% where x = z — | 2],

sin ((z - 12_2 QN)W) — sin ((%ﬁ) (141 ;2$)> (12)

_ 7T 2 —4
=1+ (1 - 20 + O (13)
2
average (A 1 4
1+ 523 +0(z7) (14)

In the last step we averaged over the fluctuations of x, which become more and
more rapid as the lattice spacing shrinks. Putting these together, we get

f(r)=%(27r—z+é+---) (1—87T—;+---—(—1+87T722%+--->) (15)
=~ gp + Ola/r)’ (16)

which is exactly the answer we got from other regulators.

Comparing to the wildly-oscillating plot above, the averaged result in (16) is the

orange curve here:
Eo(d)
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The yellow curve is what we get if we just set the (1 — 2z)% in (13) to zero.



