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1. Brain-warmer.

Use the Clifford algebra to show that in 3+1 dimensions

γµ
(
x/p+m

)
γµ = −2x/p+ 4m

where as usual /p ≡ pµγµ. This identity will be useful in the numerator of the

electron self-energy.

2. An example of renormalization in classical physics.

Consider a classical scalar field in D + 2 spacetime dimensions coupled to an

impurity (or defect or brane) in D dimensions, located at X = (xµ, 0, 0). Suppose

the field has a self-interaction which is localized on the defect. For definiteness

and calculability, we’ll consider the simple (quadratic) action

S[φ] =

∫
dD+2X

(
1

2
∂Mφ(X)∂Mφ(X) +

1

2
gδ2(~x⊥)φ2(X)

)
.

Here XM = (xµ, xi⊥), µ = 0..D− 1, i = 1, 2, i.e. x⊥ are coordinates transverse to

the impurity.

Note, I changed the definition of g relative to the statement of the problem in

order to avoid a proliferation of factors of 2.

This example is from this paper by Goldberger and Wise.

(a) What is the mass dimension of the coupling g? This is why I picked a

codimension1-two defect.

(b) Find the equation of motion for φ. Where have you seen an equation like

this before?

It’s the Schrödinger equation for a particle in a 2d delta function potential.

(c) We will study the propagator for the field in a mixed representation:

Gk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉 =

∫
dDz eikµz

µ 〈φ(z, x)φ(0, y)〉

1An object whose position requires specification of p coordinates has codimension p.
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– i.e. we go to momentum space in the directions in which translation sym-

metry is preserved by the defect. Find and evaluate the diagrams contribut-

ing toGk(x, y) in terms of the free propagatorDk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉g=0.

(We will not need the full form of Dk(x, y).) Note that there are no loop

diagrams, and in this sense, all the physics here is classical. Sum the series.

I found it convenient to do this problem in Euclidean spacetime, so G and

D are Euclidean propagators.

The euclidean path integral is of the form
∫
Dφe−S0e−V where S0 is the

kinetic term and V =
∫
dD+2xδ2(x⊥)1

2
gφ2. If we work in real time, the

interaction vertex would be a factor of −igδ(2)(x). If we work in euclidean

time, the two-point vertex is −gδ(2)(x), and no is will appear. From the sum

of diagrams of the form (just as if we had done perturbation theory in the

mass)

— + —x— + —x—x— + —x—x—x— ...

we find a geometric series

Gk(x, y) = Dk(x, y)− g
∫
d2z1Dk(x, z1)δ(2)(z1)Dk(z1, y)

+ (−g)2

∫
d2z1

∫
d2z2Dk(x, z1)δ(2)(z1)Dk(z1, z2)δ(2)(z2)Dk(z2, y) + · · ·

= Dk(x, y)− gDk(x, 0)Dk(0, y) + (−g)2Dk(x, 0)Dk(0, 0)Dk(0, y)

+ (−g)3Dk(x, 0)Dk(0, 0)2Dk(0, y) + · · ·
= Dk(x, y)− gDk(x, 0)

(
1− gDk(0, 0) + (−g)2Dk(0, 0)2 + · · ·

)
Dk(0, y)

= Dk(x, y)− g

1 + gDk(0, 0)
Dk(x, 0)Dk(0, y).

(d) You should find that your answer to part 2c depends on Dk(0, 0), which

is divergent. This divergence arises from the fact that we are treating the

defect as infinitely thin, as a pointlike object – the δ2-function in the in-

teraction involves arbitrarily short wavelengths. In general, as usual, we

must really be agnostic about the short-distance structure of things. To re-

flect this, we introduce a regulator. For example, we can replace the fourier

representation of Dk(0, 0) with the cutoff version

Dk(0, 0; Λ) =

∫ Λ

0

d̄2q
eiq·0

k2 + q2
. (1)

Do the integral.
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Note that the formula (1) would need an extra factor of i if we were working

in real time (in which case the interaction vertex would be −igδ2(x), and

the is would eat each other).

Dk(0, 0; Λ) =

∫ Λ

0

d̄2q
eiq·0

k2 + q2
=

1

4π
log

Λ2 + k2

k2

Λ�k
=

1

4π
log

Λ2

k2
.

These dimensions we’re integrating here are spacelike, so there’s no need for

any Wick rotation.

(e) Now we renormalize. We will let the bare coupling g (the one which appears

in the Lagrangian, and in the series from part 2c) depend on the cutoff

g = g(Λ). We wish to eliminate g(Λ) in our expressions in favor of some

measurable quantity. To do this, we impose a renormalization condition:

choose some reference scale µ, and demand that2

Gµ(x, y)
!

= Dµ(x, y)− g(µ)Dµ(x, 0)Dµ(0, y). (2)

This equation defines g(µ), which we regard as a physical quantity. Show

that (2) is satisfied if we let the bare coupling be g(Λ) = g(µ)Z, with

Z =
1

1− g(µ)
4π

ln
(

Λ2

µ2

) .
(f) Find the beta function for g,

βg(g) ≡ µ
dg(µ)

dµ
,

and solve the resulting RG equation for g(µ) in terms of some initial condi-

tion g(µ0). Does the coupling get weaker or stronger in the UV?

You may be bothered that we previously defined the beta function as Λ∂Λg(Λ),

in terms of the cutoff dependence. In a classically scale-invariant theory, the

dependence on Λ and µ is very closely tied together, since there are no other

scales in the problem.

Solving for g(Λ) gives

g(Λ) =
g(µ)

1− g(µ)
4π

log Λ2

µ2

.

Then

βg(g) =
g(Λ)(

1− g(Λ)
4π

log Λ2

µ2

)2

g(Λ)

2π
=
g2(µ)

2π
=
g2

2π
.

2Note that if we worked in real time, there would be an extra i in front of the second term on the

RHS.
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The solution is

g(µ) =
g(µ0)

1− g(µ0)
2π

log µ
µ0

which grows with µ. Something bad happens when the denominator van-

ishes:

1 =
g(µ0)

2π
log

µ?
µ0

.

This scale µ? where the coupling blows up is called a Landau pole.

3. Scale invariance in QFT in D = 0 + 0, part 1. [I got this problem from

Frederik Denef.]

A nice realization of QFT in 0 + 0 dimensions is the statistical mechanics of

a collection of non-interacting particles. The canonical partition function for a

single particle (moving in one dimension) is

Z =

∫
d̄PdXe−βH ∝

√
TZV (T ) (3)

with H = P 2

2
+ V (X) and T = 1/β. The momentum integral is Gaussian and

we can just do it. The partition function of N non-interacting indistinguishable

particles is then ZN/N !, which just multiplies the energy U = T 2∂T logZ by a

factor of N , so we don’t miss anything by focussing on the single particle.

Let’s consider the case

V (X) = aX2 + bX4 + cX6 (4)

and figure out the important features of the temperature dependence of the ther-

modynamic quantities by scaling arguments.

(a) Assuming a 6= 0, b 6= 0, c 6= 0, find the behavior of the thermal energy U and

the heat capacity C = ∂TU in the limit T → 0 and in the limit T →∞ using

scaling arguments. Which parts of the potential determine the respective

limiting behaviors?

First, to understand the low-temperature behavior, let x ≡ X/
√
T , so that

ZV =

∫
dXe−V (X)/T = T 1/2

∫
dxe−(ax2+bx4T+cx6T 2) = T 1/2

∫
dxe−ax

2

︸ ︷︷ ︸
some number

e−(bx4T+cx6T 2)︸ ︷︷ ︸
T→0→ 1

.

(5)
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Therefore, Z
T→0∝ T 1/2+1/2. In this case the quadratic term is most impor-

tant. If Z ∝ Tα then U = αT and C = α, so here C = 1. To understand

the high-temperature behavior, let y ≡ X/T 1/6 so that

ZV =

∫
dXe−V (X)/T = T 1/6

∫
dye−(cy6+ax2/T 2/3+bx4/T 2/3) = T 1/6

∫
dye−cy

6

e−(ax2/T 2/3+bx4/T 2/3)︸ ︷︷ ︸
T→∞→ 1

.

(6)

So at high temperatures C → 1
2

+ 1
6
. At high temperature, the particle can

explore the whole potential and the highest power in the potential is what

matters.

(b) If some of the couplings a, b, c vanish, the low or high temperature scal-

ing behavior may change. For example, what is the heat capacity at low

temperature when a = 0, b 6= 0?

In this case, the quartic term dominates and ZV ∼ T 1/4 and C = 3/4.

A word about notation: the symbol ∼ is often used by physicists to indicate

a scaling relationship, where the constant prefactors are neglected. The

relation we derive here for C however is an equality in the relevant regime

of temperatures – the constant is the thing that matters.

(c) When b is sufficiently large (and a 6= 0, c 6= 0), there will be an intermediate

temperature regime over which the heat capacity is again constant, but

different from the low- and high-temperature limits. What is this heat

capacity?

Same as the previous part.

(d) In general, we can think of the change of C with T as a kind of classical

renormalization group (RG) flow, interpolating between ‘fixed points’ where

C becomes constant. In general, these fixed points correspond to potentials

V (X) with a scaling symmetry V (λ∆X) = λV (X) for some choice of scaling

dimension ∆ of X. What is the heat capacity for a fixed point with scaling

dimension ∆ for X?

ZV =

∫
dXe−V (X)/T =

∫
dXe−V (T−∆X) = T∆

∫
dxe−V (x)︸ ︷︷ ︸

indep of T

(7)

with x ≡ T−∆X. So Z ∝ T 1/2+∆ and

C = ∆ +
1

2
. (8)
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(e) Borrowing more language of the renormalization group, we can classify

deformations δV (X) = εXm of a fixed point V (X) ∝ X2n as irrelevant,

marginal, or relevant, depending on whether the deformation becomes dom-

inant or negligible in the IR limit, i.e. in the limit of low T . Here and below

ε can take on any value, not necessarily small. Restricting to deformations

with an X → −X symmetry, what are the relevant and irrelevant defor-

mations of V (X) = X2n? (Note that a deformation δV = εX2n can be

absorbed into a redefinition of X, which does not change the heat capacity.)

Lower powers than 2n are relevant, higher powers are irrelevant.

(f) The T -dependence of correlation functions (here, expectation values of pow-

ers of X) at fixed points is also determined by the scaling properties. What

is the T -dependence of
〈
Xk
〉

at a fixed point V (X) = X2n?

〈
Xk
〉

=

∫
dXXke−V (X)/T

ZV
=
T∆(1+k)

∫
dxxke−V (x)

T∆
∝ T∆k

where ∆ = 1
2n

is the scaling dimension of X.

(g) Non-polynomial V (X) can be considered as well. For example, what is the

heat capacity at small and large T for V (X) = (1 +X2)1/n?

Since this function still grows at large X, the high-temperature behavior

is dominated by the large-X behavior where V (X) ∼ X2/n, so ∆ = n/2

and C = n+1
2

. At low temperature, we Taylor expand in small X to find

V (X) ∼ 1 +X2/n and find ∆ = 1/2 and C = 1, where we used (8).
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