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Physics 215B QFT Winter 2025
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Due 11:59pm Tuesday, January 28, 2025

1. Brain-warmer.

Use the Clifford algebra to show that in 3+1 dimensions
~H (a:p + m) YV = —2xpPp + 4m

where as usual p = pty,. This identity will be useful in the numerator of the
electron self-energy.

2. An example of renormalization in classical physics.

Consider a classical scalar field in D + 2 spacetime dimensions coupled to an
impurity (or defect or brane) in D dimensions, located at X = (x*,0,0). Suppose
the field has a self-interaction which is localized on the defect. For definiteness
and calculability, we’'ll consider the simple (quadratic) action

(ol = [ a7 (Some(x)00(x) + g0 (E)() ).

Here XM = (z*, )),pn=0.D—1,1=1,2, i.e. z are coordinates transverse to
the impurity.

(a) What is the mass dimension of the coupling g? This is why I picked a
codimension'-two defect.

(b) Find the equation of motion for ¢. Where have you seen an equation like
this before?

(¢) We will study the propagator for the field in a mixed representation:

Gl ) = (ks )~k ) = / 4Pz (3 (2, )6(0, )

— 4.e. we go to momentum space in the directions in which translation sym-
metry is preserved by the defect. Find and evaluate the diagrams contribut-
ing to Gy (7, y) in terms of the free propagator Dy (z, y) = (¢(k, 2)p(—k, y)) ,—p-
(We will not need the full form of Dy(x,y).) Note that there are no loop
diagrams, and in this sense, all the physics here is classical. Sum the series.

I found it convenient to do this problem in Euclidean spacetime, so G and
D are Euclidean propagators.

L An object whose position requires specification of p coordinates has codimension p.
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(d) You should find that your answer to part 2c¢ depends on Dy(0,0), which
is divergent. This divergence arises from the fact that we are treating the
defect as infinitely thin, as a pointlike object — the §%-function in the in-
teraction involves arbitrarily short wavelengths. In general, as usual, we
must really be agnostic about the short-distance structure of things. To re-
flect this, we introduce a regulator. For example, we can replace the fourier
representation of D (0,0) with the cutoff version

iq-0

A
Du(0,0:A) = [ @2g—. 1
(0.0:0) = [ g o

Do the integral.

(e) Now we renormalize. We will let the bare coupling g (the one which appears
in the Lagrangian, and in the series from part 2c¢) depend on the cutoff
g = g(A). We wish to eliminate g(A) in our expressions in favor of some
measurable quantity. To do this, we impose a renormalization condition:
choose some reference scale u, and demand that?

Gou(,y) = Du(x,) — g(1) Du(x,0) D, (0, y). 2)

This equation defines g(u), which we regard as a physical quantity. Show
that (2) is satisfied if we let the bare coupling be g(A) = g(u)Z, with
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(f) Find the beta function for g,

dg(p)

By(9) = g

and solve the resulting RG equation for g(u) in terms of some initial condi-
tion g(ug). Does the coupling get weaker or stronger in the UV?

3. Scale invariance in QFT in D = 0+ 0, part 1. [I got this problem from
Frederik Denef.]

A nice realization of QFT in 0 4+ 0 dimensions is the statistical mechanics of
a collection of non-interacting particles. The canonical partition function for a
single particle (moving in one dimension) is

Z = / dPdXe "M x /T Zy(T) (3)

2Note that if we worked in real time, there would be an extra i in front of the second term on the
RHS.



with H = %2 + V(X) and T" = 1/5. The momentum integral is Gaussian and
we can just do it. The partition function of N non-interacting indistinguishable
particles is then Z%/N!, which just multiplies the energy U = T?drlog Z by a

factor of N, so we don’t miss anything by focussing on the single particle.

Let’s consider the case

V(X)=aX?+bX" + cX° (4)

and figure out the important features of the temperature dependence of the ther-
modynamic quantities by scaling arguments.

(a)

Assuming a # 0,b # 0, ¢ # 0, find the behavior of the thermal energy U and
the heat capacity C' = 0rU in the limit 7" — 0 and in the limit 7" — oo using
scaling arguments. Which parts of the potential determine the respective
limiting behaviors?

If some of the couplings a, b, c vanish, the low or high temperature scal-
ing behavior may change. For example, what is the heat capacity at low
temperature when a = 0,b # 07

When b is sufficiently large (and a # 0, ¢ # 0), there will be an intermediate
temperature regime over which the heat capacity is again constant, but
different from the low- and high-temperature limits. What is this heat
capacity?

In general, we can think of the change of C' with T as a kind of classical
renormalization group (RG) flow, interpolating between ‘fixed points’ where
C becomes constant. In general, these fixed points correspond to potentials
V(X) with a scaling symmetry V(A2 X) = AV (X) for some choice of scaling
dimension A of X. What is the heat capacity for a fixed point with scaling
dimension A for X?

Borrowing more language of the renormalization group, we can classify
deformations 6V (X) = eX™ of a fixed point V(X) oc X" as irrelevant,
marginal, or relevant, depending on whether the deformation becomes dom-
inant or negligible in the IR limit, i.e. in the limit of low T". Here and below
e can take on any value, not necessarily small. Restricting to deformations
with an X — —X symmetry, what are the relevant and irrelevant defor-
mations of V(X) = X?"? (Note that a deformation §V = eX?" can be
absorbed into a redefinition of X, which does not change the heat capacity.)

The T-dependence of correlation functions (here, expectation values of pow-
ers of X)) at fixed points is also determined by the scaling properties. What
is the T-dependence of (X*) at a fixed point V(X) = X*"?
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(g) Non-polynomial V(X) can be considered as well. For example, what is the
heat capacity at small and large T for V(X) = (1 + X?)1/"?



