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1. Meson scattering. Consider the Yukawa theory with fermions, with

L = ψ̄
(
i/∂ −m

)
ψ +

1

2
∂µφ∂

µφ− 1

2
M2φ2 + Lint

and Lint = yψ̄ψφ.

(a) Consider the correction to the process φφ→ φφ coming from a fermion loop.

What counterterm is required to renormalize this interaction? (You don’t

need to actually do the integral for this problem.)

(b) Do you need a cutoff-dependent counterterm of the form δ3φ
3 in this theory?

[Hint: Use symmetries.]

2. Pauli-Villars practice.

Consider a field theory of two scalar fields with

L = −1

2
φ�φ− 1

2
m2φ2 − 1

2
Φ�Φ− 1

2
M2Φ2 − gφΦ2 + counterterms.

Compute the one-loop contribution to the self-energy of Φ. Use a Pauli-Villars

regulator – introduce a second copy of the φ field of mass Λ with the wrong-sign

propagator.

Determine the counterterms required to impose that the Φ propagator has a

pole at p2 = M2 with residue 1.

3. Bosons have worse UV behavior than fermions.

Consider again the Yukawa theory with action

S[φ, ψ] = −
∫
dDx

(
1

2
φ (� +mφ)φ+ ψ̄

(
−/∂ +mψ

)
ψ + yφψ̄ψ +

g

4!
φ4

)
+counterterms.

(a) Show that the superficial degree of divergence for a diagram A with BE

external scalars and FE external fermions is

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
(1)

where Vg and vy are the number of φ4 and φψ̄ψ vertices respectively.
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All the discussion below is about one-loop diagrams.

(b) Draw the diagrams contributing to the self energy of both the scalar and

the spinor in the Yukawa theory.

(c) Find the superficial degree of divergence for the scalar self-energy amplitude

and the spinor self-energy amplitude.

(d) In the case of D = 3 + 1 spacetime dimensions, show that (with a cutoff

on the Euclidean momenta) the spinor self-energy is actually only loga-

rithmically divergent. (This type of thing is one reason for the adjective

‘superficial’.)

Hint: the amplitude can be parametrized as follows: if the external momen-

tum is pµ, it is

M(p) = A(p2)/p+B(p2).

Show that B(p2) vanishes when mψ = 0.

4. Dimension-dependence of dimensions of couplings.

(a) In what number of space dimensions does a four-fermion interaction such as

Gψ̄ψψ̄ψ have a chance to be renormalizable? Assume Lorentz invariance.

[optional] Generalize the formula (1) for DA to include a number VG of

four-fermion vertices.

(b) If we violate Lorentz invariance the story changes. Consider a non-relativistic

theory with kinetic terms of the form
∫
dtddx

(
ψ† (i∂t −D∇2)ψ

)
. (Here D

is a dimensionful constant. In a relativistic theory we relate dimensions of

time and space by setting the speed of light to one; here, there is no such

thing, and we can choose units to set D to one.) For what number of space

dimensions might the four-fermion coupling be renormalizable?

(c) In the previous example, the scale transformation preserving the kinetic

terms acted by t→ λ2t, x→ λx. More generally, the relative scaling of space

and time is called the dynamical exponent z (z = 2 in the previous example).

Suppose that the kinetic terms are first order in time and quadratic in the

fields. Ignoring difficulties of writing local quadratic spatial kinetic terms,

what is the relationship between d and z that gives scale-invariant quartic

interactions? What if the kinetic terms are instead second order in time (as

for scalar fields)?

5. Scale invariance in QFT in D = 0 + 0, part 2. [I got this problem from

Frederik Denef.]
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The story of D = 0 + 0 QFT is more interesting if there is more than one field,

i.e. if we consider the statistical mechanics of a particle moving in more than one

dimension. Consider the example of two degrees of freedom with Hamiltonian

H =
1

2
P 2
X +

1

2
P 2
Y + V (X, Y ), V (X, Y ) = aX4 + bY 8 (2)

for some nonzero constants a, b.

(a) This potential again has a scaling symmetry V (λ1/4X,λ1/8Y ) = λV (X, Y ).

As a result, the model describes a fixed point, with constant heat capacity.

Find the heat capacity.

(b) Restricting to deformations with independent symmetries under X → −X
and Y → −Y , and using the basic scaling properties of the deformations

under the above scaling symmetry, what are the relevant, marginal and

irrelevant deformations? (Note that in this case there are true marginal

deformations that cannot be absorbed into the normalization of X and Y .)

(c) How does
〈
XkY l

〉
depend on T at a fixed point satisfying V (λ∆XX,λ∆Y Y )?

A generic relevant deformation of (2) will flow to a Gaussian fixed point V (X, Y ) ∼
X2 + Y 2 in the IR. Some other, more fine-tuned deformations will flow to other

fixed points. For example, δV (X, Y ) = εY 4 will flow to V (X, Y ) = X4 +Y 4. But

something more interesting happens for δV (X, Y ) = εX2Y 2. We’ll study this

more on the next homework.
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