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1. Brain-warmer.

Prove the Gordon identities

ū2 (qνσµν)u1 = iū2 ((p1 + p2)µ − (m1 +m2)γµ)u1

and

ū2 ((p1 + p2)
νσµν)u1 = iū2 ((p2 − p1)µ − (m2 −m1)γµ)u1

where q ≡ p2 − p1 and /p1u1 = m1u1, ū2/p2 = m2ū2, using the definitions and the

Clifford algebra.

2. Tadpole diagrams.

(a) Why don’t we worry about the following diagram as a correction

to the electron self-energy in QED?

For the remainder of the problem, we consider φ3 theory with a (small) mass:

S =

∫
dDx

(
1

2
(∂φ)2 − 1

2
m2φ2 − g

3!
φ3

)
.

(b) Notice that unlike φ4 theory (or QED), there is no symmetry that forbids

a one-point function for the scalar. Why don’t we lose generality by not

adding a term linear in φ to the Lagrangian?

(c) Now think about the following contribution to the scalar self-energy:

Show that in the limit m→ 0 there is an IR divergence. By thinking about

the significance for the scalar potential of this part of the diagram explain

the meaning of this divergence.
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3. Bremsstrahlung. [optional] Show that the number of photons per decade of

wavenumber produced by the sudden acceleration of a charge is (in the relativistic

limit −q2 � m2)

fIR(q2) = 2
α

π
ln

(
−q2

m2

)
,

where qµ = p′µ− pµ is the change of momentum and m is the mass of the charge.

4. Soft photons. [optional]

Check that the contribution from a single virtual photon (eq 2.60 of the lecture

notes, with n = 2) is

e2

2

∫
d̄4d

−iηρσ
k2 −m2

γ

(
p′

p′ · k
− p

p · k

)ρ(
p
′

−p′ · k
− p

−p · k

)σ
= − α

2π
fIR(q2) ln

(
−q2

m2
γ

)
+finite

(1)

where

fIR(q2) =

∫ 1

0

dx
m2
e − q2/2

m2
e − x(1− x)q2

− 1. (2)

[Hints: Wick rotate. Scale out the overall magnitude of k, kµ = kk̂µ. Use

Feynman parameters to combine (p · k̂)(p′ · k̂). ]

Observe that this same integral appears in the cross section involving the emission

of one real soft photon.

5. Scale invariance in QFT in D = 0 + 0, part 3. [I got this problem from

Frederik Denef.]

We continue our study of QFT in D = 0 + 0 with two fields:

Z =

∫
dPXdPY dXdY e

−H/T .

Let’s start by considering again

H =
1

2
P 2
X +

1

2
P 2
Y + V (X, Y ), V (X, Y ) = aX4 + bY 8 (3)

for some nonzero constants a, b.

A generic relevant deformation of (3) will flow to a Gaussian fixed point V (X, Y ) ∼
X2 + Y 2 in the IR. Some other, more fine-tuned deformations will flow to other

fixed points. For example, δV (X, Y ) = εY 4 will flow to V (X, Y ) = X4 +Y 4. But

something more interesting happens for δV (X, Y ) = εX2Y 2. This deformation is

a relevant perturbation of (3) in the sense that δV (λ1/4X,λ1/8Y ) = λκV (X, Y )

with κ = 3/4 < 1. But it is not true that the model simply flows to a fixed point
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with V ∝ X2Y 2 in the IR. That’s because the model with such a potential has

a divergent partition function:
∫∞
−∞ dX

∫∞
−∞ dY e

−εX2Y 2/T ∝
√

T
ε

∫
dX
|X| = ∞. We

cannot throw away the higher-order terms because they regulate the large-X and

large-Y behavior of the integral. Thus, in this model, the UV does not completely

decouple from the IR. As a consequence, naive scaling arguments break down,

and the partition function develops “anomalous” logarithmic dependence on T

for small T .

(a) Compute the partition function for the model (3) deformed by δV (X, Y ) =

εX2Y 2 analytically using Mathematica or some other symbolic software.

This will give a horrible mess of hypergeometric functions. Expand it at

small T and you should find something of the form

Z = Z0T
c log

Λ

T
(4)

up to corrections suppressed by positive powers of
√
T/Λ. Find the con-

stants Z0, c,Λ. The over all normalization Z0 does not mean anything in

classical statistical mechanics.

(b) Using (4), compute the dimensionless quantities U/T and C. (Without the

logarithmic dependence on T , these would be equal.) Check that in the

strict limit T → 0, you get the values for U/T and C that you would have

guessed based on naive scaling arguments for V ∝ X2Y 2. Note that a

logarithm varies more slowly than the T 1/2 corrections that we threw away.

(c) To what extent does the IR physics depend on the UV completion of the V ∝
X2Y 2 model? We could have started with V = aX8 + bY 8 + εX2Y 2 instead.

This model would have different high-temperature physics. Redo part for

this potential. You’ll find an equally-horrendous, but different combination

of hypergeometric functions. Which of the parameters Z0, c,Λ are the same?

(d) The result of the previous part remains true for any other UV completion of

the V ∝ X2Y 2 model, as long as δV = εX2Y 2 remains a relevant deforma-

tion. In fact, we could equally well just take V = εX2Y 2 and impose a hard

cutoff on the X and Y integrals at some fixed values |X| ≤ X0, |Y | ≤ Y0
(this is like V = Xn + Y n with n → ∞). Check that this again reduces to

(4).

(e) In view of this apparent universality of (4) at low T , it is desirable to

have a way of deriving it without having to take the detour involving the

horrendous hypergeometric functions. Here is one way. We use the hard
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cutoff |X| ≤ L, |Y | ≤ L, so that the position-space factor is

ZV (T, L) =

∫ L

−L
dX

∫ L

−L
dY e−X

2Y 2/T (5)

where we’ve set ε = 1 by a choice of temperature units. A rescaling of

the integration variables (X, Y ) → (T 1/4X,T 1/4Y ) shows that ZV (T, L) =√
TF (T−1/4L) for some function F of one variable. To find F , compute

L∂LZV directly from (5). By another suitable rescaling, show that L∂LZ is

finite and easily computable for L4/T →∞. Infer from this the dependence

on the cutoff L in the regime T � L4 and thus the function F in this regime.

This reproduces (4).

(f) We conclude that even when some kind of UV completion is required to

give finite answers, the observable low-energy physics remains essentially

independent of the UV completion. The infinite number of possible UV

completions all flow in the IR to a partition function of the same form

(4), with the details of the UV completion all lumped into a single scale

parameter Λ. In fact, in the absence of other reference scales that can be

used to fix a unit of temperature, the parameter Λ does not really label

physically distinct models, since we can always choose units with Λ = 1.

Equivalently, only dimensionless quantities (and relations between them)

are physically meaningful. Examples of such dimensionless quantities are C

and u ≡ U/T . Show that C and u obey a universal relation C = f(u) with

f(u) independent of T and Λ, and thus independent of the UV completion

of the X2Y 2 model. In the same spirit, show that the function g(u) in the

flow equation T∂Tu = g(u) is independent of the UV completion.

(g) Show that on the other hand f(u) and g(u) do depend on the IR part of the

potential, for example by comparing the IR potential V = X2Y 2 considered

above to another IR potential such as V = X6Y 6.
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