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1. Brain-warmer. Check that (∆T )µρ ≡ δµρ −
qµqρ
q2

is a projector onto momenta

transverse to qρ. This requires showing both that ∆q = 0 and that ∆2 = ∆.

2. A better formula for the superficial degree of divergence. [Thanks to

Haoran Sun for suggesting this formula.]

Starting from the definition of an (amputated!) amplitude A from a connected

Feynman diagram, show that its superficial degree of divergence is

DA = D−
∑
{g}

[g]Vg(A)−
∑
{f}

Ef (A)[f ] (1)

where {g} is the set of coupling constants and {f} is the set of fields, Vg(A) is

the number of vertices of the coupling g in the diagram A, and Ef (A) is the

number of external f fields. For example, for the Yukawa theory you studied on

a previous homework, this formula reduces to

DA = D−[g]Vg−[y]Vy −BE[φ]− FE[φ] (2)

where BE ≡ Eφ is the number of external scalars and FE ≡ Eψ is the number of

external fermions in the diagram. If you prefer, for definiteness, you could just

show the formula for this case.

The key idea is that, schematically,

AδD(
∑

p) ∼

∑
f Ef∏ (

1

Df

∫
dDxie

ipixi

)
〈0|
∏
f

fEf
∏
g

(gGg(f))Vg |0〉 (3)

where Df =
∫
dDx 〈f(x)f(0)〉 eipx is the momentum space propagator for f (don’t

forget that A is amputated!), and Gg(f) is the interaction term whose coupling

constant is g. This seems a bit too abstract, so let’s do it for the case of the

Yukawa theory and you’ll see that the idea is general. In that case the formula

above becomes

AδD(
∑

p) ∼
BE∏
i

p2
i

FE∏
i

/pi

FE+BE∏ ∫ (
dDxie

ipixi
)
〈0|φBEψFE

(
y

∫
dDyφψ̄ψ

)Vy (
g

∫
dDyφ4(y)

)Vg
|0〉

(4)
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It’s important that A corresponds to a particular connected contraction of the

object on the RHS. But we’re just here to count the mass dimension (when we

set the couplings to one). Thus

DA−D = 2BE+FE−DFE−DBE+BE[φ]+FE[ψ]+Vy (−D + [φ] + 2[ψ])+Vg (−D + 4[φ]) .

(5)

Using the fact that

[y] = −D + [φ] + 2[ψ], [g] = −D + 4[φ], (6)

and

[φ] =
D − 2

2
, [ψ] =

D − 1

2
(7)

this gives the promised formula.

3. Symmetry is attractive. Consider a field theory in D = 3 + 1 with two scalar

fields with the same mass which interact via the interaction

V = − g
4!

(
φ4

1 + φ4
2

)
− 2λ

4!
φ2

1φ
2
2.

(a) Show that when λ = g the model possesses an O(2) symmetry.

At this special point, the potential is (φ2
1 + φ2

2)2, which depends only on the

distance from the origin of the field space.

(b) Will you need a counterterm of the form φ1φ2 or φ1�φ2 (for general g, λ)?

If not, why not?

A very important point: such terms can’t be generated because they violate

the Z2 symmetry that takes (φ1, φ2) → (−φ1, φ2). In general, radiative

effects (i.e. loops) will not violate symmetries of the bare action. Exceptions

to this statement are called anomalies; this only happens when no regulator

preserves the symmetry in question.

(c) Renormalize the theory to one loop order by regularizing (for example with a

euclidean momentum cutoff or Pauli Villars), adding the necessary countert-

erms, and imposing a renormalization condition on the propagators (con-

sider the case where the scalars are both massless) and 2 → 2 scattering

amplitudes at some values of the kinematical variables s0, t0, u0. Feel free

to re-use our results from φ4 theory where appropriate.

I’ll use a hard euclidean momentum cutoff since then we can reuse our results

from φ4 theory. To save typing let me define L(x) ≡ 1
32π2 log x. Every loop

integral we will encounter is the same as in the pure massless φ4 theory that

we did in lecture.
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The symmetry that interchanges φ1 ↔ φ2 guarantees that their self-couplings

g (and the masses) stay equal (using the same principle as above). This

means we have only three counterterms to determine altogether: δm2 and

two four-point counterterms (δg, δλ). That is, we have to impose two renor-

malization conditions on the four-point functions.

First an annoying point: with the given normalization, the 1122 vertex is

actually −iλ/3.

The self-energy for φ1 is

−iΣ(p2) = +.. = −i(g+λ/3)cΛ2+O(g, λ)2

where c is a numerical constant that I can’t remember right now and which

we don’t need. To put the pole at p2 = m2
P = 0, we need the bare mass to

be

m2(Λ) = −Σ(p2 = 0) = (g + λ/4)cΛ2.

As in φ4 theory, there is no wavefunction renormalization at one loop because

Σ is independent of p2.

There are three different 2 → 2 scattering processes to consider: 11 →
11, 11 → 22, 12 → 12. (The corrections to 22 → 22 are the same as those

for 11→ 11, and similiarly 22→ 11 is the same as 11→ 22, by the exchange

symmetry.) Then using the notation we have

M11←11 = −g + (g2 +

(
λ

3

)2

)(L(s/Λ2) + L(t/Λ2) + L(u/Λ2)) + δg (8)

(9)

The λ2 term involves φ2 running in the loop. (Note that I am writing

iM = −ig + (−ig)2... and dividing the BHS by i.) Beware the symmetry

factor of 1
2

in each loop diagram.

M22←11 = −λ
3

+
λ

3
g2L(s/Λ2) +

(
λ

3

)2 (
2L(t/Λ2) + 2L(u/Λ2)

)
+ δλ (10)

(11)
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where the 2 in the s-channel term is from the fact that either φ1 or φ2 can

run in the loop. The last two diagrams have a different symmetry factor

from the others, since we can’t exchange the two propagators in the loop –

so they get an extra factor of 2.

M12←12 = −λ
3

+

(
λ

3

)2 (
2L(s/Λ2) + 2L(u/Λ2)

)
+ 2

λ

3
gL(t/Λ2) + δλ (12)

(13)

Using the renormalization conditions M11←11(s0 = t0 = u0) = −gP and

M22←11(s0 = t0 = u0) = −λP
3

we find

λ(Λ) ≡ λ+ δλ = λP + λP2gPL+ 4
λ2
P

3
L+O(λP , gP )2 (14)

g(Λ) ≡ g + δg = gP +

(
g2
P +

(
λP
3

)2
)

3L+O(λP , gP )2 (15)

where L ≡ L(s0/Λ
2). We’ve solved for the couplings perturbatively, to

second order in both, which means we ignored the difference between e.g. g

and gP in the quadratic term, as we must. From now on I will drop the P

subscripts on the physical coupling.

Notice that we would get the same answer if we defined λP by fixing a value

of M12←12 instead. This is because of crossing symmetry.

(d) Consider the limit of low energies, i.e. when s0, t0, u0 � Λ2 where Λ is the

cutoff scale. Tune the location of the poles in both propagators to p2 = 0.

Show that the coupling goes to the O(2)-symmetric value if it starts nearby

(nearby means λ/g < 3). (That is, show that at fixed physical coupling, the

ratio of bare couplings λ/g → 1 as we take the cutoff to infinity.) A nice

way to organize this is by computing the beta function for the coupling λ/g.

A nice trick for doing this is to compute the beta functions.

βg ≡ 32π2Λ2∂Λ2g(Λ) = 3

(
g2 +

(
λ

3

)2
)
, βλ ≡ 32π2Λ2∂Λ2λ(Λ) =

(
2λg + 4

λ2

3

)
where I’ve pulled out a factor of 32π2 in the definition of β for convenience

– it only affects how fast the flow happens. A useful check is that if we

set λ = 0, we reproduce the beta function for φ4 theory, βg = +3g2 (the 3

comes from the 3 different channels).
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To look at the relative flow of g and λ let’s compute

βλ/g ≡ 8π2Λ2∂Λ2

λ

g
=

1

g2
(gβλ − λβg) ∝

(
−λ

3

3
− 5

3
gλ2 + 2g2λ

)
=

1

3
λ(λ−g)(λ+6g).

This looks like this:

with the convention I’m using, positive β means that as we increase Λ, the

coupling decreases. This means that the couplings approach the point g = λ

as Λ→∞ fixing gP , λP . This is the case as long as we start with λ/g < 3.

4. Yes, please, gauge invariance. Verify for yourself that the one-loop vacuum

polarization amplitude in QED (when computed using either the improved Pauli-

Villars regulator or dim reg) satisfies the Ward identity, i.e. is proportional to

qµqν − ηµνq2. It’s up to you how much of this to hand in.

The calculation is done using dim reg on pages 251-252 of Peskin and using PV

in Zee (2d ed) pages 202-204.

5. Soft gravitons? [optional] Photons are massless, and this means that the cross

sections we measure actually include soft ones that we don’t detect. If we don’t

include them we get IR-divergent nonsense.

Gravitons are also massless. Do we need to worry about them in the same way?

Here we’ll sketch some hints for how to think about this question.

(a) Consider the action

S0[hµν ] =

∫
d4x

1

2
hµν�h

µν .

This is a kinetic term for (too many polarizations of a) two-index symmetric-

tensor field hµν = hνµ (which we’ll think of as a small fluctuation of the

metric about flat space: gµν ' ηµν+hµν , and this is where the coupling below

comes from). Like with the photon, we’ll rely on the couplings to matter to
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keep unphysical polarizations from being made. Write the propagator for h.

We still raise and lower indices with ηµν .
1

The propagator is simply the inverse of the kinetic term. After the gauge

fixing (implicit in the expression I gave) it is indeed invertible, just like in

Maxwell theory. The graviton propagator you’ll find on Wikipedia is the

propagator for hµν , rather than h̄µν .

(b) Couple the graviton to the electron field via

SG =

∫
d4x GhµνTµν

Tµν ≡ ψ̄ (γµ∂ν + γν∂µ)ψ. (16)

What are the engineering dimensions of the coupling constant G? What is

the new Feynman rule?

G =
√
GN has dimensions of one over mass. This factor pops out of L ∼

1
GN

√
gR + Tµνh

µν upon rescaling h to give it canonical kinetic terms.

(c) Draw a (tree level) Feynman diagram that describes the creation of gravi-

tational radiation from an electron as a result of its acceleration from the

absorption of a photon (eγ → eh). Evaluate it if you dare. Estimate or

calculate the cross section (hint: use dimensional analysis).

The two diagrams that contribute at tree level are similar to those appearing

in Compton scattering. The external graviton in the final state comes with

a polarization tensor ε?µν . Since we don’t measure the polarization of the soft

graviton, we want the polarization-summed cross-section. As for photons,

the polarization sum (there are two polarizations in D = 4)∑
r

εµνr (q)ερσr (q) = ηµρηνσ + ηµσηνρ + terms with qµ or qν

1A warning: I’ve done two misdeeds in the statement of this problem. First, the Einstein-Hilbert

term is
∫
d4x 1

8πGN

√
gR =

∫
d4x 1

8πGN
(∂h)2 + ... – it has a factor of GN in front of it. R has units

of 1
length2 , and g is dimensionless, so GN has units of length2 – it is 8πGN = 1

M2
Pl

, where MPl is the

Planck mass. I’ve absorbed a factor of
√
GN into h so that the coefficient of the kinetic term is unity.

Second, the (∂h)2 here involves various index contractions, which I haven’t written. Some gauge fixing

(de Donder gauge) is required to arrive at the simple expression I wrote above, and one more thing –

the hµν I’ve written is actually the ‘trace-reversed’ graviton field

h̄µν ≡ hµν −
1

2
hηµν

where h ≡ ηµνhµν is the trace. (I didn’t write the bar.) For the details of this, which are not needed

for this problem, see chapter 10 of my GR notes.
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takes the same form as the numerator of the propagator, up to ambiguous

terms that vanish because of the Ward identity for the gauge invariance

described below.

The amplitude has a single factor of G, so the probability goes like G2 which

has dimensions of length-squared, which is already the right dimensions for a

cross section. Apparently, for energies large compared to the electron mass,

this cross section is constant in energy.

(d) Now the main event: study the one-loop diagram by which the graviton

corrects the QED vertex. Is it IR divergent? If not, why not?

There are extra powers of the momentum in the numerator from the deriva-

tive coupling. This paper shows that this is not enough to prevent an IR

divergence. So indeed, if we wish to include the (very small!) radiative

corrections from gravitons, we must study inclusive amplitudes that allow

for soft gravitons.

(e) If you get stuck on the previous part, replace the graviton field by a massless

scalar π(x). Compare the case of derivative coupling λ∂µπψ̄γ
µψ with the

more direct Yukawa coupling yπψ̄ψ. [Warning: though this example has

some similarities with the graviton case, the conclusion is different.]

In this case, the extra powers of the momentum in the numerator from the

derivative coupling do prevent an IR divergence.

(f) Quite a bit about the form of the coupling of gravity to matter is deter-

mined by the demand of coordinate invariance. This plays a role like gauge

invariance in QED. Acting on the small fluctuation, the transformation is

hµν(x)→ hµν(x) + ∂µλν(x) + ∂νλµ(x).

What condition does the invariance under this (infinitesimal) transformation

impose on the object Tµν appearing in (3).

The variation of the action is

δS =

∫
d4x (∂µλν(x) + ∂νλµ(x))T µν

IBP
= −2

∫
d4xλµ∂νT

µν

which vanishes if ∂νT
µν = 0, i.e. if T µν is a conserved stress tensor.

6. Equivalent photon approximation. [optional] Consider a process in which

very high-energy electrons scatter off a target. At leading order in α, the electron

line is connected to the rest of the diagram by a single photon propagator. If

the initial and final energies of the electron are E and E ′, the photon will carry

momentum q with q2 = −2EE ′(1−cos θ) (ignoring the electron mass m� E). In
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the limit of forward scattering (θ → 0), we have q2 → 0, so the photon approaches

its mass shell. In this problem, we ask: To what extent can we treat it as a real

photon?

(a) The matrix element for the scattering process can be written as

M = −ieū(p′)γµu(p)
−iηµν
q2
M̂ν(q)

where M̂ν represents the coupling of the virtual photon to the target. Let

q = (q0, ~q) and define q̃ = (q0,−~q). The contribution to the amplitude from

the electron line can be parametrized as

ū(p′)γµu(p) = Aqµ +Bq̃µ + Cεµ1 +Dεµ2

where εα are unit vectors transverse to ~q. Show that B is at most of order

θ2 (dot it with q), so we can ignore it at leading order in an expansion about

forward scattering. Why do we not care about the coefficient A?

Dotting with q, the terms with ε vanish since the polarizations are transverse

and the Ward identity gives 0 = Aq2 +Bqµq̄
µ, but q2 = −2EE ′(1− cos θ) ∼

θ2 when θ � 1. Since qµq̄
µ is order 1, B must be order θ2. The term with

A drops out when we contract this with M̂µ, again by the Ward identity.

(b) Working in the frame with p = (E, 0, 0, E), compute

ū(p′)γ · εαu(p)

explicitly using massless electrons, where ū and u are spinors of definite

helicity, and εα=‖,⊥ are unit vectors parallel and perpendicular to the plane

of scattering. Keep only terms through order θ. Note that for ε‖, the (small)

3̂ component matters.

Choose definite helicity states, say

u+(p) =
√

2E
(
0 0 1 0

)t
, u−(p) =

√
2E
(
0 1 0 0

)t
for ~p ∝ ẑ, i.e.pµ = (E, 0, 0, E)µ. The two definite-helicity spinors for mo-

mentum p′ = (E ′, 0, E ′sinθ, E ′ cos θ) are related by a spinor rotation by

angle θ, so

u+(p′) =
√

2E ′
(
0 0 cos θ/2 sin θ/2

)t ' √2E ′
(
0 0 1 θ/2

)t
,

u−(p′) =
√

2E ′
(
− sin θ/2 cos θ/2 0 0

)t ' √2E ′
(
−θ/2 1 0 0

)t
.
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We must also find expressions for the polarization vectors:

ε⊥ = (0, 0, 1, 0), ε‖ ∝ (0, p′ cos θ − p, 0, p′ sin θ) ∝ (0, 1, 0,
E ′

E ′ − E
θ).

Then

ū′±γ · ε‖u± = ±i
√
EE ′θ, ū′±γ · ε‖u± = −

√
EE ′

E + E ′

E − E ′
θ,

and ū′±γ · εαu∓ = 0. The key conclusion is that all the nonzero entries in

ū±(p′)γ · εαu±(p) are order θ.

(c) Now write the expression for the electron scattering cross section, in terms

of |M̂µ|2 and the integral over phase space of the target. This expression

must be integrated over the final electron momentum ~p′. The integral over

p3′ is an integral over the energy loss of the electron. Show that the integral

over p′⊥ diverges logarithmically as p′⊥ or θ → 0.

We find |M|2 ∝ θ2. Then

σ ∝
∫

0

dθ sin θ
|M|2

q4
∼
∫

0

dθ
θ3

θ4

is log divergent.

(d) The divergence as θ → 0 is regulated by the electron mass (which we’ve

ignored above). Show that reintroducing the electron mass in the expression

q2 = −2(EE ′ − pp′ cos θ) + 2m2

cuts off the divergence and gives a factor of log (s/m2) in its place.

Just replace the denominator q4 with this regulated expression.

(e) Assembling all the factors, and assuming that the target cross sections are in-

dependent of photon polarization, show that the largest part of the electron-

target cross section is given by considering the electron to be the source of

a beam of real photons with energy distribution given by

Nγ(x)dx =
dx

x

α

2π
(1 + (1− x)2) log

s

m2

where x ≡ Eγ/E. This is the Weiszäcker-Williams equivalent photon ap-

proximation. It is a precursor to the theory of jets and partons in QCD.
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