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1. Radiative corrections to Compton scattering. Check that our prescription

for renormalizing QED through one loop (e.g. using Pauli-Villars with renor-

malization conditions on the electron mass and the coupling e2

4π
= 1

137
) suffices

to remove all the cutoff dependence in the S matrix for Compton (eγ → eγ)

scattering through O(α2).

[We mostly went over this in lecture, but I did say something slightly wrong at

the time.]

The LSZ formula says

Seγ←eγ =
(√

Ze

)2 (√
Zγ

)2

( amputated diagrams ) . (1)

We have a choice about how to do the book-keeping. If we write the photon

propagator as

ηµν
e2

0Zγ
q2

= ηµν
e2

q2
(2)

then there are no factors of Zγ in the S-matrix. Alternatively, we can say that

Zγ = 1 and we use the renormalized coupling.

The amputated diagrams that contribute through one loop are the following, plus

the diagram that results from interchanging the two external photon lines, i.e.

imposing Bose statistics. At tree level there is:

The diagrams with divergences are:

The first diagram replaces the left vertex with

γµ  γµ
(

1 +
α

4π
ln

Λ2

m2
+ · · ·

)
. (3)
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This cancels the divergence in the(√
Ze

)2

= 1− α

4π
ln

Λ2

m2
+ · · · . (4)

(Recall that in eµ→ eµ there was only one vertex to correct. Here we have two:

The third diagram replaces the right vertex with

γν  γν
(

1 +
α

4π
ln

Λ2

m2
+ · · ·

)
. (5)

This divergence is cancelled by the middle diagram, which replaces the electron

propagator with

i

/p−m
 

i

/p−m− Σ(/p)
' iZe

/p−m
=

i

/p−m

(
1− α

4π
ln

Λ2

m2
+ · · ·

)
(6)

effectively another factor of Ze, cancelling the singularity in the second vertex

correction.

This diagram is actually finite:

∼
∫
d4k

1

/k
3

1

k2

This diagram is zero by Furry’s theorem:

I think that’s it. This calculation was first done by Brown and Feynman in 1952,

https://link.aps.org/doi/10.1103/PhysRev.85.231

2. Yukawa couplings in QED. Consider adding to QED an additional scalar field

of (physical) mass m, coupled to the electron by

LY = λφψ̄ψ.

Verify that the divergent contribution to the electron wavefunction renormaliza-

tion factor Z2 from a virtual φ equals the divergent contribution to the QED
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vertex Z1 from the one loop correction to the vertex with a virtual φ. For an

added challenge, verify that the finite parts agree as well.

Since we are only worried about the UV divergences here, in the vertex correction,

one only need attend to the `2 term in the numerator of the integrand. In dim

reg, the divergent parts are

δdiv1 = 2λ2

∫ 1

0

dx

∫ 1−x

0

dy
ε− 2

D

D

2

Γ(2−D/2)

(4π)D/2Γ(3)
µ̄ε∆D/2−2.

and

δdiv2 =
(
∂/pδΣ|/p=m

)div
= −λ2

∫ 1

0

dx(1− x)
Γ(2−D/2)

(4π)D/2Γ(2)
µ̄ε∆D/2−2

Using the identity Γ(1 + x) = xΓ(x), we have D
2Γ(3)

= 1
Γ(2)

and δdiv1 = δdiv2 as

D → 4.

For purposes of matching the finite parts, some advice: we can put the electron

lines on shell and sandwich between spinors satisfying the equations of motion

(as we did for the QED vertex correction), and also set the incoming photon

momentum q = p′ − p = 0.

When using dimensional regularization, to get the finite parts to agree it is nec-

essary to continue all appearances of D = 4 to D dimensions. In particular,

the number of gamma matrices should be D, and in particular one must use the

identity:

/̀γµ/̀ =
`2

D
γνγ

µγν = −D − 2

D
`2γµ.

3. Spectral representation at finite temperature.

In lecture we have derived a spectral representation for the two-point function of

a scalar operator in the vacuum state

−iD(x) = 〈0| T O(x)O†(0) |0〉

Derive a spectral representation for the two-point function of a scalar operator

in thermal equilibrium at a nonzero temperature T :

−iDβ(x) ≡ tr
e−βH

Zβ
T O(x)O†(0) =

1

Zβ

∑
n

e−βEn 〈n| T O(x)O†(0) |n〉 .

Here Zβ ≡ tre−βH is the thermal partition function. Check that the zero tem-

perature (β →∞) limit reproduces our previous result. Assume that O = O† if

you wish.
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The idea is again to insert a resolution of the identity in between the operators.

All the steps as for the vacuum correlators go through, the only difference being

that instead of arriving at a sum of squares of matrix elements of the operator

between the vacuum and an arbitrary state, we get matrix elements between pairs

of states:

iD(x) = Z−1
β

∑
n

e−βEn
∑
m

||Onm ||2
(
eix(pn−pm)θ(t) + eix(pm−pn)θ(−t)

)
.

From here, the momentum space representation follows as before. When β →∞,

only the groundstate contributes (assume it is nondegenerate) and Zβ → e−βE0 .

4. Another consequence of the optical theorem.

A general statement of the optical theorem is:

−i (M(a→ b)−M(b→ a)) =
∑
f

∫
dΦfM?(b→ f)M(a→ f) .

Consider QED with electrons and muons.

(a) Consider scattering of an electron (e−) and a positron (e+) into e−e+ (so

a = b in the notation above). We wish to consider the contribution to the

imaginary part of the amplitude for this process which is proportional to

Q2
eQ

2
µ where Qe and Qµ are the electric charges of the electron and muon

(which are in fact numerically equal but never mind that). Draw the rele-

vant Feynman diagram, and compute the imaginary part of this amplitude

ImΠµ(q2) (just the Q2
eQ

2
µ bit) as a function of s ≡ (k1 + k2)2 where k1,2

are the momenta of the incoming e+ and e−. Feel free to re-use results of

calculations from lecture.

Check that the imaginary part is independent of the cutoff.

There are a number of diagrams at this order, but the only one that con-

tributes an imaginary part at finite s is the s-channel diagram with a muon

loop, that is, where we insert into the photon propagator in the tree level

s-channel diagram the contribution to the vacuum polarization from a muon

loop (in red):

The key ingredient we’ve calculated already:

δΠ2(q2) = Π2(q2)− Π2(0) =
e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

m2

)
.
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(Note that without the fermion-loop minus sign, the sign would be opposite.)

The imaginary part ImδΠ2(q2+iε) comes from the locus where the argument

of the log is negative (in which case the imaginary part is π), which happens

when m2 − x(1 − x)q2 < 0, which happens when x ∈ [x−, x+] ≡ [1
2
−√

1−m2/q2, 1
2

+
√

1−m2/q2]. So

ImδΠ2(q2) = − e2

2π2

∫ x+

x−

dxx(1− x)π = −α
3

√
1− 4m2/q2

(
1 +

2m2

q2

)
.

Note that there is also a t-channel diagram proportional to Q2
eQ

2
µ, but it

does not have an imaginary part.

(b) Use the optical theorem and the fact that the total cross section for e+e− →
µ+µ− must be positive

σ(e+e− → µ+µ−) ≥ 0

to show that a Feynman diagram with a fermion loop must come with a

minus sign. Check that with the correct sign, the optical theorem is verified.

Consider forward scattering of e+e−, and average over initial spins using

1

4

∑
spins

ū(k)γµv(k+)v̄(k+)γµu(k) = −k · k+ − 4m2
e ' −(k + k+)2 = −s.

(Notice that this is negative!) Recalling that Πµν
2 = q2ηµνiΠ2(q2)+ longitu-

dinal terms, gives

ImM = −s
2

s2
ImΠ2(q2) (7)

=
e4

12π

√
1− 4m2

q2
(1 +

2m2

q2
) = 2Ecmpcmσe+e−→L+L−

E�me' 2sσe+e−→L+L− .

(8)

If we left out the minus sign, we would get a negative cross section. In fact,

this is how Feynman first figured out this particular Feynman rule.
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