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1. Bubble-chain approximation for bound states.

In discussing the form of the spectral density for an operator that creates a

massive particle, I mentioned that in addition to the single-particle delta function

at s = m2, and the continuum above s = (2m)2, there could be delta functions

associated with bound states at m2 < s < (2m)2. Here we’ll get an idea how we

might discover such a thing theoretically.

For this problem, we’re going to work in D = 2 + 1 dimensions, so that we can

avoid the problem of UV divergences. Consider the theory of a single real scalar

with action

S[φ] =

∫
d3x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4

)
where m, g are real. In this problem we will consider both signs of g, without

worrying about questions of the stability of the vacuum (maybe there is a small

φ6 term that saves the day but can be ignored here).

(a) Consider the amplitude M(s) for elastic scattering φφ→ φφ, with s = E2
T ,

the square of the total center of mass energy. ComputeM(s) in the bubble-

chain approximation, defined as the following infinite sum of Feynman dia-

grams:

+ · · ·

Do not worry about justifying the validity of the approximation (it is not

justified in this theory, though it is in a large-n version of the theory), and

do not worry about convergence of the series. You can leave your answer as

a Feynman parameter integral.

(b) Show, by explicit calculation, that the bubble chain approximation to the

scattering amplitude obeys the optical theorem. [In elastic scattering in the

center of mass frame in 3d, the element of solid angle dΩ is just an element

of ordinary angle dθ, and dσ/dθ = |M|2
32πpE2

T
where p is the magnitude of the

spatial momentum of either particle.]
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(c) The interaction between the φ quanta could result in two of them forming a

bound state of mass MB. A signal of such a bound state is the appearance

of a pole in M(s) at s = M2
B on the real axis, but below threshold (0 <

M2
B < 4m2). Find the values of g for which the bubble-chain approximation

predicts bound states. [You are not asked to give an analytic expression for

MB.]

2. Another consequence of unitarity of the S matrix.

(a) Show that unitarity of S, S†S = I = SS†, implies that the transition matrix

is normal:

T T † = T †T . (1)

(b) What does this mean for the amplitudes Mαβ (defined as usual by Tαβ =
/δ(pα − pβ)Mαβ)?

(c) The probability of a transition from α to β is

Pα→β = |Sβα|2 = V T/δ(pα − pβ)|Mαβ|2

which is IR divergent. More useful is the transition rate per unit time per

unit volume:

Γα→β ≡
Pα→β
V T

.

Show that the the total decay rate of the state α is

Γα ≡
∫
dβΓα→β = 2ImMαα.

(d) Consider an ensemble of states pα evolving according to the evolution rule

∂tpα = −pαΓα +

∫
dβpβΓβ→α. (2)

S[p] ≡ −
∫
dαpα ln pα is the Shannon entropy of the distribution. Show that

dS

dt
≥ 0

as a consequence of (1). This is a version of the Boltzmann H-theorem.

(e) [Bonus] Notice that we are doing something weird in the previous part by

using classical probabilities. This is a special case; more generally, we should

describe such an ensemble by a density matrix ραβ. Generalize the result of

the previous part appropriately.
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3. Abrikosov-Nielsen-Oleson vortex string.

Consider the Abelian Higgs model in D = 3 + 1:

Lh ≡ −
1

4
FµνF

µν +
1

2
|Dµφ|2 − V (|φ|)

where φ is a (complex) scalar field of charge q whose covariant derivative is

Dµφ = (∂µ − iqeAµ)φ, and let’s take

V (|φ|) =
κ

2
(|φ|2 − v2)2

for some couplings κ, v. Here we are going to do some interesting classical field

theory. Set q = 1 for a bit.

(a) Consider a configuration that is independent of x3, one of the spatial co-

ordinates, and static (independent of time). Show that its energy density

(energy per unit length in x3) is

U =

∫
d2x

(
1

2
F 2
12 +

1

2
|Diφ|2 + V (|φ|)

)
.

(b) [optional, but used crucially below] Consider the special case where κ =

κ0 =
(
eq
2

)2
. Assuming that the integrand falls off sufficiently quickly at

large x1,2, show that

Uκ=1 =

∫
d2x

(
1

2

(
F12 +

√
κ
(
|φ|2 − v2

))2
+

1

4
|Diφ+ iεijDjφ|2 +

√
κv2F12 −

1

2
iεk`∂k (φ?D`φ)

)
.

(c) The first two terms in the energy density of the previous part are squares and

hence manifestly positive, so setting to zero the things being squared will

minimize the energy density. Show that the resulting first-order equations

(they are called BPS equations after people with those initials, Bogolmonyi,

Prasad, Sommerfeld)1

0 = (Di + iεijDj)φ, F12 = −|φ|2 + v2

are solved by (x1 + ix2 ≡ reiϕ)

φ = einϕf(r), A1 + iA2 = −ieiϕa(r)− n
r

if

f ′ =
a

r
f, a′ = r(f 2 − v2)

1Let’s set κ = 1 for this discussion; it does not affect the qualitative conclusions.
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with boundary conditions

a→ 0, f → v +O
(
e−mr

)
, at r →∞ (3)

a→ n+O(r2), f → rn(1 +O(r2)), at r → 0.

(For other values of κ, the story is not as simple, but there is a solution

with the same qualitative properties. See for example §3.3 of E. Weinberg,

Classical solutions in Quantum Field Theory.)

(d) The second BPS equation and (3) imply that all the action (in particular the

support of F12) is localized near r = 0. Evaluate the magnetic flux through

the x1 − x2 plane, Φ ≡
∫
B · da in the vortex configuration labelled by n.

Show that the energy density is U = v2

2
· Φ.

(e) Show that the previous result for the flux follows from demanding that the

two terms in Diφ cancel at large r so that

Diφ
r→∞→ 0 (4)

faster than 1/r. Solve (4) for Ai in terms of φ and integrate
∫
d2xF12.

(f) Argue that a single vortex (string) in the ungauged theory (with global U(1)

symmetry)

L = |∂φ|2 + V (|φ|)

does not have finite energy per unit length. By a vortex, I mean a configu-

ration where φ
r→∞→ veiϕ, where x1 + ix2 = reiϕ.

(g) Consider now the case where the scalar field has charge q. (Recall that in a

superconductor made by BCS pairing of electrons, the charged field which

condenses has electric charge two.) Show that the magnetic flux in the core

of the minimal (n = 1) vortex is now (restoring units) hc
qe

. This is a real

thing that people can measure.

4. BPS conditions from supersymmetry. [bonus!] What’s special about κ =

κ0? For one thing, it is the boundary between type I and type II superconductors

(which are distinguished by the size of the vortex core). More sharply, it means

the mass of the scalar equals the mass of the vector, at least classically. Moreover,

in the presence of some extra fermionic fields, the model with this coupling has an

additional symmetry mixing bosons and fermions, namely supersymmetry. This

symmetry underlies the special features we found above. Here is an outline (you

can do some parts without doing others) of how this works. The logic in part

(c) underlies a lot of the progress in string theory since the mid-1990s. Please do

not trust my numerical factors.
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(a) Add to Lh a charged fermion Ψ (partner of φ) and a neutral Majorana

fermion λ (partner of Aµ):

Lf =
1

2
iΨ̄ /DΨ + iλ̄ /Dλ+ λ̄Ψφ+ h.c..

Consider the transformation rules

δεAµ = iε̄γµλ, δεΨ = Dµφγ
µε, δεφ = −iε̄Ψ, δελ = −1

2
iσµνFµνε+ i(|φ|2 − v)ε

where the transformation parameter ε is a Majorana spinor (and a grass-

mann variable). Show that (something like this) is a symmetry of L =

Lh + Lf . This is N = 1 supersymmetry in D = 4.

(b) Show that the conserved charges associated with these transformations Qα

(they are grassmann objects and spinors, since they generate the transfor-

mations, via δεfields = [εαQα + h.c., fields]), satisfy the algebra

{Q, Q̄} = 2γµPµ + 2γµΣµ (5)

where Pµ is the usual generator of spacetime translations and Σµ is the vortex

string charge, which is nonzero in a state with a vortex string stretching in

the µ direction. Q̄ ≡ Q†γ0 as usual.

(c) If we multiply (5) on the right by γ0, we get the positive operator {Qα, Q
†
β}.

This operator annihilates states which satisfy Q |BPS〉 = 0 for some com-

ponents of Q. Such a state is therefore invariant under some subgroup of

the superymmetry, and is called a BPS state. Now look at the right hand

side of (5)×γ0 in a configuration where Σ3 = πnv2 and show that its energy

density is E ≥ π|n|v2, with the inequality saturated only for BPS states.

(d) To find BPS configurations, we can simply set to zero the relevant supersym-

metry variations of the fields. Since we are going to get rid of the fermion

fields anyway, we can set them to zero and consider just the (bosonic) vari-

ations of the fermionic fields. Show that this reproduces the BPS equations.
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