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1. Gauge theory brain-warmers.

Please do 4 of the following 6 problems. The rest are bonus material.

(a) Show that the adjoint representation matrices(
TA
)
BC
≡ −ifABC

furnish a dimG-dimensional representation of the Lie algebra

[TA, TB] = ifABCT
C .

Hint: commutators satisfy the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

The structure constants fABC are part of the definition of the Lie algebra –

in any representation, the generators satisfy [TA, TB] = ifABC TC . This is a

property of the algebra, not of any particular representation. The Jacobi

identity follows from this fact, by taking the commutator of the BHS with

TD. Reshuffling this identity gives the desired equation (up to a sign which

may be flipped by redefining T → −T ).

More abstractly, the operation B → adA(B) ≡ [A,B] is called the ad-

joint action of A on B. The Jacobi identity is then the statement that

adAadB(C)− adBadA(C) = ad[A,B](C), i.e.[adA, adB] = ad[A,B]. This is the

statement that the map A→ adA preserves the Lie algebra, and hence gives

a representation, which is inevitably called the adjoint representation. In

terms of the generators of an arbitrary representation, adTAT
B = [TA, TB] =

ifABCT
C , we find an expression for the adjoint generators, which is indeed(

TAadj
)
BC

= ifABC with the opposite sign from what I said.

(b) Show that if (TA)ij are generators of a Lie algebra in some unitary repre-

sentation R, then so are −(TA)?ij. Convince yourselves that these are the

generators of the complex conjugate representation R̄.

We have [TA, TB] = ifABCTC , so ([TA, TB])? = −ifABCT
?
C (the structure con-

stants are real for a unitary rep) so [T ?A, T
?
B] = −ifABCT

?
C , so [−T ?A,−T ?B] =

ifABC(−T ?C).
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The representation operators in the rep R are eiα
ATA , with αA real and

TA hermitian (if R is a unitary representation). In the rep R̄, they are

e−iα
A(TA)? , so the generators in this rep are indeed −(TA)?ij.

(c) Show that in a basis of Lie algebra generators where trTATB = λδAB, the

structure constants fABC are completely antisymmetric.

Start from the Lie algebra [TA, TB] = ifABCTC , multiply the BHS by TD

on the right and take the trace:

λifABD = tr[TA, TB]TD = trTATBTD − trTBTATD

and now use cyclicity of the trace, to show that this is the same as, e.g. tr[TD, TA]TB.

(d) From the transformation law for A, show that the non-abelian field strength

transforms in the adjoint representation of the gauge group.

Mindlessly plugging in, we have

FA
µν 7→ ∂µ

(
AAν + ∂νλ

A − fABCλBACν
)
− (µ↔ ν)

+ fABC
(
ABµ + ∂µλ

B − fBDEλDAEµ
) (
ACν + ∂νλ

C − fCFGλFAGν
)

= FA
µν − fABCλB∂µACν + fABCλ

B∂νA
C
µ − fABCfCFGλFABµAGν − fABCfBDEλDAEµACν

(1)

= FA
µν − fABCλB∂µACν + fABCλ

B∂νA
C
µ − λDAEµACν (fABCfBDE + fAEBfBDC)

(2)

= FA
µν − fABCλB∂µACν + fABCλ

B∂νA
C
µ − λDAEµACν fADBfBEC (3)

= FA
µν − fABCλB∂µACν + fABCλ

B∂νA
C
µ − λBADµAEν fABCfCDE (4)

= FA
µν − λBfABCFC

µν . (5)

Everywhere we ignoredO(λ2) terms. At step (2) we used the Jacobi identity.

At steps (1) and (3) we relabelled dummy indices.

(e) Show that

trF ∧ F = dtr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
.

Write out all the indices I’ve suppressed.

On the LHS, we find trF ∧F = trdA∧dA+2trdA∧A∧A+trA∧A∧A∧A
(using the fact that two-forms are commutative). The last term vanishes by
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cyclicity of the trace:

trA4 ≡ trA ∧ A ∧ A ∧ A ≡ Aa ∧ Ab ∧ Ac ∧ AdtrT aT bT cT d (6)

cyclicity
= Aa ∧ Ab ∧ Ac ∧ AdtrT dT aT bT c (7)

{A3,A}=0
= −Ad ∧ Aa ∧ Ab ∧ ActrT dT aT bT c (8)

relabel
= −Aa ∧ Ab ∧ Ac ∧ AdtrT aT bT cT d = −trA4.

(9)

On the RHS we get

dtr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
= trdA ∧ dA+ A ∧ d2A (10)

+ 2/3 (dA ∧ A ∧ A+ A ∧ dA ∧ A+ A ∧ A ∧ dA)

(11)

= trdA ∧ dA+ 2dA ∧ A ∧ A (12)

using d2 = 0 and again the fact that a 2-form (such as dA) is commutative.

(f) [Bonus] If you are feeling under-employed, find ω2n−1 such that trF n =

dω2n−1.

2. The field of a magnetic monopole.

We saw that F = dA implies (when A is a smooth, globally well-defined differen-

tial form) that dF = 0, which means no magnetic charge. If A is singular, dF can

be nonzero. Moreover, by a gauge transformation we can move the singularity

around and hide it, so that the field is everywhere non-singular.

A magnetic monopole of magnetic charge g is defined by the condition that∫
S2 F = g, where S2 is any sphere surrounding the monopole. If the system is

spherically symmetric, we can write

F =
g

4π
d cos θdϕ.

(In this problem, we’ll work on a sphere at fixed distance from the monopole.)

(a) Show that the vector potential

AN =
g

4π
(cos θ − 1) dϕ

gives the correct F = dA. Show that it is a well-defined one-form on the

sphere except at the south pole θ = π.
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(b) Show that the one-form

AS =
g

4π
(cos θ + 1) dϕ

also gives the correct F = dA. Show that it is well-defined except at the

north pole θ = 0.

(c) Near the equator both AN,S are well-defined. Show that as long as eg ∈ 2πZ,

these two one-forms differ by a gauge transformation

AS − AN =
1

ie
g−1(θ, ϕ)dg(θ, ϕ)

for g(θ, ϕ) a U(1)-valued function on the sphere, well-defined away from the

poles.

Zee page 249. The required g(ϕ) = ei2
eg
4π
ϕ, which is single-valued g(0) =

g(2π) only under the stated condition (which is Dirac quantization of mag-

netic charge).

3. Wilson loops in abelian gauge theory at weak and strong coupling.

(a) At weak coupling, the Wilson loop expectation value is a gaussian integral.

In D = 4, study the continuum limit of a rectangular loop with time extent

T � R, the spatial extent. Show that this reproduces the Coulomb force.

VI.B of this Kogut review explains this in some detail.

(b) Consider the weak coupling calculation again for a Wilson loop coupled to

a massive vector field. Show that this reproduces an exponentially-decaying

force between external static charges.

In this case the propagator is short-ranged, so as long as R, T � m−1A the

answer will be log 〈W (T,R)〉 ' aR + bT a perimeter law.

(c) [bonus problem] Compute the combinatorial factors in the first few terms

of the strong-coupling expansion of the Wilson loop in U(1) lattice gauge

theory.

(d) [bonus problem] Consider the case of lattice gauge theory in two space-

time dimensions. In this case, show that the plaquette variables W (∂�) =∏
`∈∂� U` are actually independent variables.

In spacetime dimensions larger than two, any 3-volume V gives a relation

between the plaquette variables, since∏
�∈∂V

U� = 1.
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This is because U� =
∏

`∈∂� U�, and the plaquettes tiling the boundary

of V (∂V ) have boundaries that precisely cancel out so that the boundary

of the boundary of V is empty. This is a general deep fact about topol-

ogy: a boundary has no boundary. (This is the key ingredient in simplicial

homology.)

But in D = 2, there are no 3-volumes, and hence no relations between the

plaquette variables.

Here is another, related deep point: If we didn’t realize that the boundaries

of the plaquettes making up the boundary of V didn’t cancel, we would

write, in the abelian case,∏
�∈∂V

U� = e
ie

∑
�∈∂V

∮
∂�

A Stokes
= eie

∑
�∈∂V

∫
� F = e

ie
∫
∂V

F Stokes
= eie

∫
V dF .

But this last expression is the number of monopoles n inside the volume V

times their charge g. But

eiegn = 1

is Dirac quantization.

In contrast, in two spacetime dimensions, there are no 3-volumes, so the

plaquette variables are independent, and we can write the lattice gauge

theory path integral, even for a non-abelian group, as

Z =

∫ ∏
`

du`e
−S[U�] =

∫ ∏
�

dU�e
−S[U�]

(perhaps up to some overall constant factor). For the special case where S

is the Wilson action, the action is linear in the plaquette variables, so

Z =

∫ ∏
�

dU�e
− 1
g2

∑
� trU� =

∏
�

(∫
dU�e

− 1
g2

trU�

)
=
∏
�

z� = zArea
�

where Area denotes the number of plaquettes. The theory just falls apart

into independent plaquettes which don’t care about each other. This extends

to the evaluation of correlators of Wilson loops,

〈W (C)〉 =
∏
�

(∫
dU�U�e

− 1
g2

trU�

z�

)
= w(�)Area(C)

so the area law is exact. There are no propagating degrees of freedom, but

the theory is not quite topological – it depends on areas. The object z� is

a combination of characters of the group.
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